Synthesis 2023; 55(17): 2742-2756
DOI: 10.1055/s-0041-1738441
paper

Synthesis and Epoxidation of Flav-3-enes as Methodology for the Biomimetic Preparation of Flavan-3,4-diols

Jeanette van Jaarsveldt
,
Charlene Marais
,
Johannes H. van Tonder
,
Financial support by the University of the Free State and Pet Labs Pharmaceuticals (to JvJ) is greatly appreciated and acknowledged.


Abstract

Since flavonoids exhibit a remarkable number of pharmacological properties like antioxidant, anti-inflammatory, and antimicrobial activities, a great deal of work has been done on the medicinal and therapeutical application of these compounds. Despite the central role of flavan-3,4-diols in the synthesis of many other classes of flavonoids, only a few methods for the preparation of these compounds have been reported. In this paper, the results on the preparation of methoxy-substituted flavan-3,4-diols, displaying natural substitution patterns, from readily available starting materials through a 3-step process is disclosed. It is also indicated that the 4-aryl-substituted analogues can become available from the corresponding flav-3-enes if an aromatic nucleophile is added during the dimethyldioxirane (DMDO) epoxidation process.

Supporting Information



Publication History

Received: 14 February 2023

Accepted after revision: 27 April 2023

Article published online:
25 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sharma R. In Polyphenols in Human Health and Disease . Watson RR, Preedy VR, Zibadi S. Academic Press; San Diego: 2014: 757-778
  • 2 Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Am. J. Clin. Nutr. 2001; 74: 418
  • 3 Kang SR, Park KI, Park HS, Lee DH, Kim JA, Nagappan A, Kim EH, Lee WS, Shin SC, Park MK, Han DY, Kim GS. Food Chem. 2011; 129: 1721
  • 4 Xie Y, Yang W, Tang F, Chen X, Ren L. Curr. Med. Chem. 2015; 22: 132
  • 5 Smith ML, Murphy K, Doucette CD, Greenshields AL, Hoskin DW. J. Cell. Biochem. 2016; 117: 1913
  • 6 Luo H, Daddysman MK, Rankin GO, Jiang B.-H, Chen YC. Cancer Cell Inter. 2010; 10: 16
  • 7 Egert S, Rimbach G. Adv. Nutr. 2011; 2: 8
  • 8 Panche AN, Diwan AD, Chandra SR. J. Nutr. Sci. 2016; 5: 1
  • 9 Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS. Plant Foods Hum. Nutr. 2004; 59: 113
  • 10 Mouton CH. L, Steenkamp JA, Young DA, Bezuidenhoudt BC. B, Ferreira D. Tetrahedron 1990; 46: 6885
  • 11 Fabre S, Gueroux M, Nunes E, Szlosek-Pinaud M, Pianet I, Fouquet E. Tetrahedron 2015; 71: 3045
    • 12a Steenkamp JA, Mouton CH. L, Ferreira D. Tetrahedron 1991; 47: 7605
    • 12b Yano T, Ohmori K, Takahashi H, Kusumi T, Suzuki K. Org. Biomol. Chem. 2012; 10: 7685
    • 12c Krohn K, Ahmed I, John M, Letzel M, Kuck D. Eur. J. Org. Chem. 2010; 2544
    • 12d Alharthy RD, Hayes CJ. Tetrahedron Lett. 2010; 51: 1193
    • 12e Maloney DJ, Chen S, Hecht SM. Org. Lett. 2006; 8: 1925
    • 12f Fujii W, Toda K, Kawaguchi K, Kawahara S, Katoh M. Tetrahedron 2013; 69: 3543
  • 13 Steenkamp JA, Malan JC. S, Ferreira D. J. Chem.Soc., Perkin Trans. 1 1988; 2179
    • 14a Takahashi H, Kubota Y, Miyazaki H, Onda M. Chem. Pharm. Bull. 1984; 32: 4852
    • 14b Takahashi H, Li S, Harigaya Y, Onda M. Chem. Pharm. Bull. 1988; 36: 1877
    • 14c Onda M, Li S, Li X, Harigaya Y, Takahashi H, Kawase H, Kagawa H. J. Nat. Prod. 1989; 52: 1100
    • 14d Agusta A, Maehara S, Ohashi K, Simanjuntak P, Shibuya H. Chem. Pharm. Bull. 2005; 53: 1565
    • 14e Yenjai C, Wanich S. Bioorg. Med. Chem. Lett. 2010; 20: 2821
    • 14f Kozilowski AP, Tückmantel W, Hu Y. J. Org. Chem. 2001; 66: 1287
    • 14g Bernini R, Crisante F, Gentili P, Morana F, Pierini M, Piras M. J. Org. Chem. 2011; 76: 820
    • 15a Augustyn JA. N, Bezuidenhoudt BC. B, Ferraira D. Tetrahedron 1990; 46: 2651
    • 15b Burke AJ, O’Sullivan WI. Tetrahedron 1997; 53: 8491
    • 15c Litkei G, Gulácsi K, Antus S, Blaskó G. Eur. J. Org. Chem. 1995; 1711
    • 15d Hu C, Zhou Z, Xiang Y, Song X, Wang H, Tao K, Ye X. Med. Chem. Res. 2018; 27: 194
    • 16a Kholer EP, Chadwell HM. Org. Synth. 1922; 2: 1
    • 16b Montes-Avila J, Díaz-Camacho SP, Sicairos-Félix J, Delgado-Vargas F, Rivero IA. Bioorg. Med. Chem. 2009; 17: 6780
    • 17a Zhang M, Jagdmann GE. Jr, Van Zandt M, Beckett P, Schroeter H. Tetrahedron: Asymmetry 2013; 24: 362
    • 17b Han Z, Achilonu MC, Kendrekar PS, Joubert E, Ferreira D, Bonnet SL, Van der Westhuizen JH. J. Nat. Prod. 2014; 77: 583
    • 17c Hofmann E, Webster J, Do T, Kline R, Snider L, Hauser Q, Higginbottom G, Campbell A, Ma L, Paula S. Bioorg. Med. Chem. 2016; 24: 578
  • 18 Smith MB. Organic Synthesis, 3rd ed. Smith MB. Academic Press; Oxford: 2010: 347-490
    • 19a Clark-Lewis JW, Skingle DC. Aust. J. Chem. 1967; 20: 2169
    • 19b Clark-Lewis JW, Jemison RW. Aust. J. Chem. 1968; 21: 2247
    • 20a Zaveri NT. Org. Lett. 2001; 3: 843
    • 20b Devakaram R, Black DStC, Andrews KT, Fisher GM, Davis RA, Kumar N. Bioorg. Med. Chem. 2011; 19: 5199
    • 21a Lyttle DA, Jensen EH, Struck WA. Anal. Chem. 1952; 24: 1843
    • 21b Brown HC, Mead EJ, Subba Rao BC. J. Am. Chem. Soc. 1955; 77: 6209
  • 22 Pasumansky L, Goralski CT, Singaram B. Org. Process Res. Dev. 2006; 10: 959
  • 23 Yuan H, Bi K.-J, Li B, Yue R.-C, Ye J, Shen Y.-H, Shan L, Jin H.-Z, Sun Q.-Y, Zhang W.-D. Org. Lett. 2013; 15: 4742
  • 24 Bulman Page PC, Appleby LF, Chan Y, Day DP, Buckley BR, Slawin AM. Z, Allin SM, McKenzie MJ. J. Org. Chem. 2013; 78: 8074
    • 25a Pieterse T. New ring closing metathesis based methodology for the synthesis of monomeric flavonoids, Ph. D. Thesis. University of the Free State; South Africa: 2017: 156-158
    • 25b Pieterse T. New ring closing metathesis based methodology for the synthesis of monomeric flavonoids, Ph. D. Thesis. University of the Free State; South Africa: 2017: 180-181
    • 26a Adam W, Saha-Möller CR, Zhao C.-G. Organic Reactions, Vol. 61. Wiley; Hoboken: 2002: 219-516
    • 26b Waddington VL. Applications and mechanisms of dioxirane oxidations, Ph.D. Thesis. Loughborough University; UK: 1998: 1-45
    • 26c Waddington VL. Applications and mechanisms of dioxirane oxidations, Ph.D. Thesis. Loughborough University; UK: 1998: 115-142
    • 26d Murray RW, Singh M, Jeyaraman R. J. Am. Chem. Soc. 1992; 114: 1346
    • 26e Wang Z.-X, Tu Y, Frohn M, Zhang J.-R, Shi Y. J. Am. Chem. Soc. 1997; 119: 11224
    • 27a Adam W, Fell RT, Saha-Möller CR, Zhao C.-G. Tetrahedron: Asymmetry 1998; 9: 397
    • 27b Klein S, Roberts SM. J. Chem. Soc., Perkin Trans. 1 2002; 2686
    • 28a Adam W, Jekő J, Lévai A, Nemes C, Patonay T, Sebők P. Tetrahedron Lett. 1995; 36: 3669
    • 28b Adam W, Fell RT, Lévai A, Patonay T, Peters K, Simon A, Tóth G. Tetrahedron: Asymmetry 1998; 9: 1121
    • 28c Lévai A, Adam W, Fell RT, Gessner R, Patonay T, Simon A, Tóth G. Tetrahedron 1998; 54: 13105
    • 29a Du Preez IC, Roux DG. J. Chem. Soc. C 1970; 1800
    • 29b Benavides A, Bassarello C, Montoro P, Vilegas W, Piacente S, Pizza C. Phytochemistry 2007; 68: 1277
    • 29c Van Jaarsveldt J. New methodology for the biomimetic synthesis of flavan-3,4-diols and derivatives, M. Sc. Thesis. University of the Free State; South Africa: 2019: 78-91
    • 30a He F, Pan Q.-H, Shi Y, Duan C.-Q. Molecules 2008; 13: 2674
    • 30b Robertson AV. Can. J. Chem. 1959; 37: 1946
    • 30c Freitas AA, Shimizu K, Dias LG, Quina FH. J. Braz. Chem. Soc. 2007; 18: 1537
  • 31 Arterburn JB. Tetrahedron 2001; 57: 9765
  • 32 Angelis YS, Hatzakis NS, Smonou I, Orfanopoulos M. Tetrahedron Lett. 2001; 42: 3753
  • 33 D’Accolti L, Fusco C, Annese C, Rella MR, Turteltaub JS, Williard PG, Curci R. J. Org. Chem. 2004; 69: 8510
  • 34 Adam W, Saha-Möller CR, Zhao C.-G. J. Org. Chem. 1999; 64: 7492
    • 35a Clayden J, Greeves N, Warren SG. Organic Chemistry, 2nd ed. Oxford University Press; Oxford: 2012: 439
    • 35b Clayden J, Greeves N, Warren SG. Organic Chemistry, 2nd ed. Oxford University Press; Oxford: 2012: 574-575
    • 35c Clayden J, Greeves N, Warren SG. Organic Chemistry, 2nd ed. Oxford University Press; Oxford: 2012: 854
  • 36 Van Tonder JH. Studies directed at the stereoselective synthesis of flavonoids through the hydrogenation of prochiral precursors, M. Sc. Thesis. University of the Free State; South Africa: 2008: 91-101
  • 37 Hayes BL. Microwave Synthesis: Chemistry at the Speed of Light. CEM Pub; Matthews/ NC: 2002: 8-138
  • 38 Brown BR, Cummings W, Newbould J. J. Chem. Soc. 1961; 3677
  • 39 Gan L, Brook MA. Can. J. Chem. 2006; 84: 1416
  • 40 Quiroz-Florentino Hs, Hernández-Benitez RI, Aviña JA, Burgueño-Tapia E, Tamariz J. Synthesis 2011; 1106
  • 41 Kohari Y, Hoshino Y, Matsuyama H, Nakano H. Heterocycles 2010; 82: 843
  • 42 Pouget C, Fagnere C, Basly J, Leveque H, Chulia A. Tetrahedron 2000; 56: 6047
  • 43 Machado AH. L, de Sousa MA, Patto DC. S, Azevedo LF. S, Bombonato FI, Correia CR. D. Tetrahedron Lett. 2009; 50: 1222
  • 44 Krohn K, Ahmed I, John M. Synthesis 2009; 779
  • 45 Stokes S, Mustain R, Pickle L, Mead KT. Tetrahedron Lett. 2012; 53: 3890
  • 46 Ashihara Y, Nagata Y, Kurosawa K. Bull. Chem. Soc. Jpn. 1977; 50: 3298
  • 47 Adam W, Chan YY, Cremer D, Gauss J, Scheutzow D, Schindler M. J. Org. Chem. 1987; 52: 2800
  • 48 Fujise S, Hishida S, Onuma T, Adachi K, Fujise Y, Munekata T. Bull. Chem. Soc. Jpn. 1962; 35: 1245
  • 49 Fujise S, Munekata T, Ishikawa E, Kobayashi T, Sakai I, Ueno M, Yuki T, Hishida S. Nippon Kagaku Zasshi 1963; 84: 81
  • 50 Takahashi H, Li S, Harigaya Y, Onda M. J. Nat. Prod. 1988; 51: 730
  • 51 Clark-Lewis JW, Jackman LM, Spotswood TM. Aust. J. Chem. 1964; 17: 632
  • 52 Clark-Lewis JW. Aust. J. Chem. 1968; 21: 2059
  • 53 Jurd L, Lundin R. Tetrahedron 1968; 24: 2653