Synlett 2022; 33(13): 1282-1286
DOI: 10.1055/s-0041-1738399
letter

Diversity-Oriented Synthesis of Coumarin-Fused Cyclopentanones via a Nucleophilic Phosphine Controlled Cascade Reaction

Qi Huang
,
Junfeng Fu
,
Zhixin Chang
,
Wenhao Gan
,
Yongjiang Wang
,
Xiaoyu Han
We gratefully acknowledge the Basic Public Welfare Research Program of Zhejiang Province (LGJ22B020001) and the Zhejiang University of Science and Technology (2021QN061) for generous financial support.


Abstract

A phosphine-promoted intermolecular annulation reaction of functionalized 3-benzoyl coumarin with alkynone has been disclosed. This reaction was found to be highly dependent on the nucleophilicity of the phosphine. Two classes of coumarin-fused cyclopentanones were selectively afforded in moderate to good yields with excellent diastereoselectivities under the mild reaction conditions.

Supporting Information



Publication History

Received: 24 February 2022

Accepted after revision: 11 May 2022

Article published online:
20 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Simeonov SP, Nunes JP. M, Guerra K, Kurteva VB, Afonso CA. M. Chem. Rev. 2016; 116: 5744
    • 1b Xiong Y, Lin H, Zhu C.-L, Chen Y.-H, Ye R, Hu G.-W, Xie J.-H, Zhou Q.-L. Org. Lett. 2021; 23: 8883
    • 1c Bhoite SP, Bansode AH, Burate PA, Suryavanshi G. Asian J. Org. Chem. 2019; 8: 1907
    • 1d Xu Y, Su T, Huang Z, Dong G. Angew. Chem. Int. Ed. 2016; 55: 2559 ; Angew. Chem. 2016, 128, 2605
    • 1e Fuchibe K, Takayama R, Aono T, Hu J, Hidano T, Sasagawa H, Fujiwara M, Miyazaki S, Nadano R, Ichikawa J. Synthesis 2018; 50: 514
    • 2a Kauteteladze AG, Kuznetsov DM. J. Org. Chem. 2017; 82: 10795
    • 2b Kuhn C, Roulland E, Madelmont JC, Monneret C, Florent JC. Org. Biomol. Chem. 2004; 2: 2028
    • 2c Eddolls JP, Iqbal M, Roberts SM, Santoro MG. Tetrahedron 2004; 60: 2539
    • 2d Furuta K, Maeda M, Hirata Y, Shibata S, Kiuchi K, Suzuki M. Bioorg. Med. Chem. Lett. 2007; 17: 5487
    • 2e Nicolaou KC, Heretsch P, ElMarrouni A, Hale CR. H, Pulukuri KK, Kudva AK, Narayan V, Prabhu KS. Angew. Chem. Int. Ed. 2014; 53: 10443 ; Angew. Chem. 2014, 126, 10611
    • 2f Scognamiglio J, Jones L, Letizia CS, Api AM. Food Chem. Toxicol. 2012; 50: S608
    • 2g Aluko OM, Iroegbu JD, Ijomone OM, Umukoro S. Clin. Psychopharmacol. Neurosci. 2021; 19: 220
    • 2h Ullah R, Ali G, Khan A, Ahmad S, Al-Harrasi A. Int. J. Mol. Sci. 2021; 22: 9559
    • 3a Li J, Liang X, Wang Q, Breyer RM, McCullough L, Andreasson K. Neurosci. Lett. 2008; 438: 210
    • 3b Thach D, Brill Z, Grover H, Esguerra K, Thompson J, Maimone T. Angew. Chem. Int. Ed. 2020; 59: 1532 ; Angew. Chem. 2020, 132, 1548
    • 3c Bukanova JV, Solntseva EI, Kudova E. Front. Mol. Neurosci. 2020; DOI: 10.3389/fnmol.2020.00044.
    • 3d Yang X.-X, Zhao J.-R, Jia X.-S, Yang L.-W, Zhai H.-B. Chin. J. Chem. 2003; 21: 970
    • 4a Bhoite SP, Bansode AH, Burate PA, Suryavanshi G. Asian J. Org. Chem. 2019; 8: 1907
    • 4b Dutta S, Bhat NS. ACS Omega 2021; 6: 35145
    • 4c Baumann M, Baxendale IR. Synthesis 2018; 50: 753
    • 4d Wang C, Yu Z, Yang Y, Sun Z, Wang Y, Shi C, Liu Y.-Y, Wang A, Leus K, Voort PV. D. Molecules 2021; 26: 5736
    • 4e Batsanov AS, Knowles JP, Lightfoot AP, Maw G, Thirsk CE, Twiddle SJ. R, Whiting A. Org. Lett. 2007; 9: 5565
    • 4f Fuchibe K, Takayama R, Aono T, Hu J, Hidano T, Sasagawa H, Fujiwara M, Miyazaki S, Nadano R, Ichikawa J. Synthesis 2018; 50: 514
    • 4g Nie S, Chen X, Ma Y, Li W, Yu B. Carbohydr. Res. 2016; 432: 36
    • 5a Mbofana CT, Miller S. ACS Catal. 2014; 4: 3671
    • 5b Wilson JE, Sun J, Fu GC. Angew. Chem. Int. Ed. 2010; 49: 161 ; Angew. Chem. 2010, 122, 165
    • 5c Chen X.-Y, Li S, Sheng H, Liu Q, Jafari E, Essen CV, Rissanen K, Enders D. Chem. Eur. J. 2017; 23: 13042
    • 5d Lathrop SP, Rovis T. J. Am. Chem. Soc. 2009; 131: 13628
    • 5e Zhang J, Miao Z. Org. Biomol. Chem. 2018; 16: 9461
    • 5f Tan C.-Y, Lu H, Zhang J.-L, Liu J.-Y, Xu P.-F. J. Org. Chem. 2020; 85: 594
    • 6a Xu Z, Chen Q, Zhang Y, Liang C. Fitoterapia 2021; 150: 104863
    • 6b Sandhu S, Bansal Y, Silakari O, Bansal G. Bioorg. Med. Chem. 2014; 22: 3806
    • 6c Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee K.-H. Med. Res. Rev. 2003; 23: 322
    • 6d Song F, Huo X, Guo Z. Curr. Top. Med. Chem. 2021; 21: 1692
    • 6e Khan A, Kulkarni MV, Gopal M, Shahabuddin MS, Sun CM. Bioorg. Med. Chem. Lett. 2005; 15: 3584
    • 6f Chougala BM, Shastri SL, Holiyachi M, Shastri LA, More SS, Ramesh KV. Med. Chem. Res. 2015; 24: 4128
    • 6g Vaarla K, Vishwapathi V, Vermeire K, Vedula RR, Kulkarni CV. J. Mol. Struct. 2022; 1249: 131662
    • 6h Dorababu A. Arch. Pharm. 2022; 355: 2100345

      For recent reviews, see:
    • 7a Huang Y, Liao J, Wang W, Liu H, Guo H. Chem. Commun. 2020; 56: 15235
    • 7b Wang Y, Pan J, Chen Z, Sun X, Wang Z. Mini.-Rev. Med. Chem. 2013; 13: 836
    • 7c Wang T, Han X, Zhong F, Yao W, Lu Y. Acc. Chem. Res. 2016; 49: 1369
    • 7d Chuang S.-C, Nallapati SB. Asian J. Org. Chem. 2018; 7: 1743
    • 8a Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 8b Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
    • 8c Ma D, Lin Y, Lu X, Yu Y. Tetrahedron Lett. 1988; 29: 1045
    • 8d Ma D, Yu Y, Lu X. J. Org. Chem. 1989; 54: 1105
    • 8e Ma D, Lu X. Tetrahedron Lett. 1989; 30: 843
    • 8f Ma D, Lu X. Tetrahedron 1990; 46: 3189
    • 8g Xu Z, Lu X. Tetrahedron Lett. 1997; 38: 3461
    • 8h Xu Z, Lu X. J. Org. Chem. 1998; 63: 5031
    • 8i Xu Z, Lu X. Tetrahedron Lett. 1999; 40: 549
    • 9a Zhang J, Luo J, Li X, Zhang Q, Wu Z, Lan Y, Wei D. J. Org. Chem. 2021; 86: 15276
    • 9b He Z.-L, Chen P, Chen Z.-C, Du W, Chen Y.-C. Org. Lett. 2022; 24: 100
    • 9c Zhang J, Chan W.-L, Chen L, Ullah N, Lu Y. Org. Chem. Front. 2019; 6: 2210
    • 9d Chang G.-H, Wang C.-Y, Reddy GM, Tsai Y.-L, Lin W. J. Org. Chem. 2016; 81: 10071
    • 9e Fan L.-P, Yang W.-J, Xu D.-C, Li X.-S, Xie J.-W. Synth. Commun. 2011; 41: 3376
    • 9f Han X, Wang Y, Zhong F, Lu Y. J. Am. Chem. Soc. 2011; 133: 1726
    • 9g Han X, Wang S.-X, Zhong F, Lu Y. Synthesis 2011; 1859
    • 9h Zhao Q.-Y, Han X, Wei Y, Shi M, Lu Y. Chem. Commun. 2012; 48: 970
    • 9i Han X, Zhong F, Wang Y, Lu Y. Angew. Chem. Int. Ed. 2012; 51: 767 ; Angew. Chem. 2012, 124, 791
    • 9j Yang L, Xie P, Li E, Li X, Huang Y, Chen R. Org. Biomol. Chem. 2012; 10: 7628
    • 9k Wu L, Chen K, Huang Y, Li E.-Q. Asian J. Org. Chem. 2020; 9: 1179
    • 9l Feng J, Huang Y. ACS Catal. 2020; 10: 3541
    • 9m Shi W, Mao B, Xu J, Wang Q, Wang W, Wu Y, Li X, Guo H. Org. Lett. 2020; 22: 2675
    • 9n Wang C, Chen Y, Li J, Zhou L, Wang B, Xiao Y, Guo H. Org. Lett. 2019; 21: 7519
    • 9o Sriramurthy V, Kwon O. Org. Lett. 2010; 12: 1084
    • 9p Li J.-H, Du D.-M. Adv. Synth. Catal. 2015; 357: 3986
    • 9q Vagh SS, Hou B.-J, Edukondalu A, Wang P.-C, Lin W. Org. Lett. 2021; 23: 842
    • 9r Huang Y, Liao J, Wang W, Liu H, Guo H. Chem. Commun. 2020; 56: 15235
    • 9s Pinto N, Retailleau P, Voituriez A, Marinetti A. Chem. Commun. 2011; 47: 1015
    • 9t Neel M, Gouin J, Voituriez A, Marinetti A. Synthesis 2011; 2003
    • 9u Xie C, Smaligo AJ, Song X.-R, Kwon O. ACS Cent. Sci. 2021; 7: 536
    • 10a He F, Shen G, Yang X. Chin. J. Chem. 2022; 40: 15
    • 10b Reddy CR, Kolgave DH. J. Org. Chem. 2021; 86: 17071
    • 10c Sun Y.-L, Wei Y, Shi M. Adv. Synth. Catal. 2017; 359: 3176
    • 10d Lian Z, Shi M. Org. Biomol. Chem. 2012; 10: 8048
    • 10e Lian Z, Wei Y, Shi M. Tetrahedron 2012; 68: 2401
    • 10f Liang L, Li E, Xie P, Huang Y. Chem. Asian J. 2014; 9: 1270
    • 10g Liang L, Huang Y. Org. Lett. 2016; 18: 2604
    • 10h Zhang K, Cai L, Hong S, Kwon O. Org. Lett. 2019; 21: 5143
    • 10i Gao X, Li Z, Yang W, Liu Y, Chen W, Zhang C, Zheng L, Guo H. Org. Biomol. Chem. 2017; 15: 5298
    • 10j Li Z, Yu H, Liu Y, Zhou L, Sun Z, Guo H. Adv. Synth. Catal. 2016; 358: 1880
    • 10k Deng Z.-X, Xie Z.-Z, Zheng Y, Xiao J.-A, Wang R.-J, Xiang H.-Y, Yang H. Org. Biomol. Chem. 2019; 17: 2187
    • 10l Khong SN, Kwon O. Molecules 2012; 17: 5626
    • 10m Zhang Y, Sun Y, Wei Y, Shi M. Adv. Synth. Catal. 2019; 361: 2129
    • 10n Vagh SS, Hou B.-J, Edukondalu A, Wang P.-C, Lin W. Org. Lett. 2021; 23: 842
    • 10o Deng Z.-X, Xie Z.-Z, Zheng Y, Xiao J.-A, Wang R.-J, Xiang H.-Y, Yang H. Org. Biomol. Chem. 2019; 17: 2187
    • 10p Zhang K, Cai L, Hong S, Kwon O. Org. Lett. 2019; 21: 5143

      For recent reviews, see:
    • 11a Li Y, Yu J, Bi Y, Yan G, Huang D. Adv. Synth. Catal. 2019; 361: 4839
    • 11b Wang Z, Wang K.-K, Chen R, Liu H. Chen K. 2020; 2456
    • 11c Nájera C, Sydnes LK, Yus M. Chem. Rev. 2019; 119: 11110
    • 11d Whittaker RE, Dermenci A, Dong G. Synthesis 2016; 48: 161
    • 11e Gers-Panther CF, Müller TJ. J. Adv. Heterocycl. Chem. 2016; 120: 67
    • 11f Zhang J, Abudukeremu M, Miao Z. Chin. J. Org. Chem. 2017; 37: 2859
    • 11g Abbiati G, Arcadi A, Marinelli F, Rossi E. Synthesis 2014; 46: 687
    • 11h Wang L, Zhu H, Peng T, Yang D. Org. Biomol. Chem. 2021; 19: 2110
    • 12a Wang X, Sun K. Chin. J. Appl. Chem. 2017; 534
    • 12b Han T, Wang K.-H, Yang M, Zhao P, Wang F, Wang J, Huang D, Hu Y. Org. Lett. 2022; 87: 498
    • 12c Huang H, Wang H, Gong C, Zhuang Z, Feng W, Wu S.-H, Wang L. Org. Chem. Front. 2022; 9: 413
    • 12d Shi F, Luo S.-W, Tao Z.-L, He L, Yu J, Tu S.-J, Gong L.-Z. Org. Lett. 2011; 13: 4680
  • 13 Fu J, Takia IR. T, Chen P, Liu W, Jiang C, Yao W, Zeng X, Wang Y, Han X. Org. Chem. Front. 2021; 8: 6323
  • 14 CCDC 2153490 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 15 CCDC 2153492 contains the supplementary crystallographic data for compound 4a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.