Synthesis 2022; 54(16): 3558-3567
DOI: 10.1055/s-0041-1737411
feature

Synthesis of Peptide N-Acylpyrroles via Anodically Generated N,O-Acetals

Yutong Lin
a   Research School of Chemistry, Australian National University, Building 137 Sullivans Creek Road, Canberra, ACT 2601, Australia
b   Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
,
a   Research School of Chemistry, Australian National University, Building 137 Sullivans Creek Road, Canberra, ACT 2601, Australia
b   Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
› Author Affiliations
This work was supported by the Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (CE200100012) and the Westpac Foundation (Research Fellowship to L.R.M.).


Abstract

An electrochemical approach to peptide C-terminal N-acylpyrroles is described from readily accessible C-terminal hydroxyproline-containing peptides, prepared via standard Fmoc solid-phase peptide synthesis (Fmoc-SPPS). Following electrochemical decarboxylation, the reactive hydroxyproline-derived N,O-acetal intermediate is aromatized under mild acidic conditions, which enable concomitant deprotection of amino acid side-chain protecting groups. The resulting peptide N-acylpyrrole is amenable to late-stage peptide modifications, including reduction with NaBH4 to deliver a valuable C-terminal peptide aldehyde motif.

Supporting Information



Publication History

Received: 21 January 2022

Accepted after revision: 23 February 2022

Article published online:
09 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sharma S, Schiller MR. Crit. Rev. Biochem. Mol. Biol. 2019; 54: 85
  • 2 Arbour CA, Mendoza LG, Stockdill JL. Org. Biomol. Chem. 2020; 18: 7253
    • 3a Malins LR. Pept. Sci. 2018; 110: e24049
    • 3b Bottecchia C, Noël T. Chem. Eur. J. 2019; 25: 26
    • 3c Liu JQ, Shatskiy A, Matsuura BS, Karkas MD. Synthesis 2019; 51: 2759
    • 3d Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Chem. Soc. Rev. 2020; 49: 2039
    • 3e Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Org. Chem. Front. 2021; 8: 6720
    • 4a Renaud P, Seebach D. Angew. Chem., Int. Ed. Engl. 1986; 25: 843
    • 4b Seebach D, Charczuk R, Gerber C, Renaud P. Helv. Chim. Acta 1989; 72: 401
    • 4c Gerber C, Seebach D. Helv. Chim. Acta 1991; 74: 1373
    • 4d Seebach D. Helv. Chim. Acta 2019; 102: e1900072
  • 5 Mackay AS, Payne RJ, Malins LR. J. Am. Chem. Soc. 2022; 144: 23
    • 6a Lin Y, Malins LR. Chem. Sci. 2020; 11: 10752
    • 6b Lin Y, Malins LR. J. Am. Chem. Soc. 2021; 143: 11811
    • 6c Lin Y, Malins LR. In Peptide Conjugation: Methods and Protocols . Hussein WM, Stephenson RJ, Toth I. Humana Press; New York: 2021: 131
  • 7 El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
  • 8 Goldys AM, McErlean CS. P. Eur. J. Org. Chem. 2012; 1877
    • 9a Mucsi Z, Chass GA, Csizmadia IG. J. Phys. Chem. B 2008; 112: 7885

    • An earlier term, amidity, has also been used to quantify amide bond strength; see:
    • 9b Mucsi Z, Tsai A, Szori M, Chass GA, Viskolcz B, Csizmadia IG. J. Phys. Chem. A 2007; 111: 13245
    • 10a Meng G, Szostak R, Szostak M. Org. Lett. 2017; 19: 3596
    • 10b Li GC, Ma SY, Szostak M. Trends Chem. 2020; 2: 914
    • 10c Meng G, Zhang J, Szostak M. Chem. Rev. 2021; 121: 12746
    • 11a Candy CF, Jones RA, Wright PH. J. Chem. Soc. C 1970; 2563
    • 11b Cipiciani A, Linda P, Savelli G, Bunton CA. J. Am. Chem. Soc. 1981; 103: 4874
    • 11c Itahara T, Kawasaki K, Ouseto F. Bull. Chem. Soc. Jpn. 1984; 57: 3488
    • 11d Nicolaou KC, Papahatjis DP, Claremon DA, Magolda RL, Dolle RE. J. Org. Chem. 1985; 50: 1440
    • 11e Sheppard GS, Vollhardt KP. C. J. Org. Chem. 1986; 51: 5496
    • 11f Carmona E, Marin JM, Palma P, Paneque M, Poveda ML. Inorg. Chem. 1989; 28: 1895
    • 11g Voigt J, Noltemeyr M, Reiser O. Synlett 1997; 202
    • 11h Evans DA, Borg G, Scheidt KA. Angew. Chem. Int. Ed. 2002; 41: 3188
    • 11i Le ZG, Chen ZC, Hu Y, Zheng QG. Synthesis 2004; 1951
    • 11j Ariyarathna Y, Tunge JA. Chem. Commun. 2014; 50: 14049
    • 11k Kerr WJ, Lindsay DM, Owens PK, Reid M, Tuttle T, Campos S. ACS Catal. 2017; 7: 7182
    • 12a Wang NC, Teo KE, Anderson HJ. Can. J. Chem. 1977; 55: 4112
    • 12b Liska R. Heterocycles 2001; 55: 1475
    • 12c Wang H, Mao JY, Shuai SJ, Chen SG, Zou D, Walsh PJ, Li J. Org. Chem. Front. 2021; 8: 6000
    • 13a D’Silva C, Iqbal R. Synthesis 1996; 457
    • 13b Hodous BL, Fu GC. J. Am. Chem. Soc. 2002; 124: 10006
    • 13c Neumann H, Brennfuhrer A, Grob P, Riermeier T, Almena J, Beller M. Adv. Synth. Catal. 2006; 348: 1255
    • 13d Wu YJ, Wang SW, Zhang LJ, Yang GS, Zhu XC, Zhou ZH, Zhu H, Wu SH. Eur. J. Org. Chem. 2010; 326
    • 13e Ren W, Yamane M. J. Org. Chem. 2010; 75: 8410
    • 13f Fang WW, Deng QY, Xu MZ, Tu T. Org. Lett. 2013; 15: 3678
    • 13g Phukan K. Int. J. Appl. Biol. Pharm. Technol. 2014; 5: 171
    • 13h Ta L, Sunden H. Chem. Commun. 2018; 54: 531
    • 13i Woojcik P, Trzeciak AM. Appl. Catal., A 2018; 560: 73
    • 13j Vogelsang D, Vondran J, Vorholt AJ. J. Catal. 2018; 365: 24
    • 13k Shan SJ, Zhang H, Wang XD. J. Chem. Res. 2012; 36: 56
    • 13l Umehara A, Ueda H, Tokuyama H. J. Org. Chem. 2016; 81: 11444
    • 13m Chen H, Chen D.-H, Huang P.-Q. Sci. China: Chem. 2020; 63: 370
    • 13n Zhu M, Huang X.-L, Xu H, Zhang X, Zheng C, You S.-L. CCS Chem. 2021; 3: 652
    • 14a Gross H. Chem. Ber. 1962; 95: 2270
    • 14b Lee SD, Brook MA, Chan TH. Tetrahedron Lett. 1983; 24: 1569
    • 14c Chung BY, Bae DJ, Jin J.-I, Lee SD. J. Korean Chem. Soc. 1992; 36: 603
    • 14d Tafel KA, Bates DK. J. Org. Chem. 1992; 57: 3676
    • 14e Fang Y, Leysen D, Ottenheijm HC. J. Synth. Commun. 1995; 25: 1857
    • 14f Ekkati AR, Bates DK. Synthesis 2003; 1959
    • 14g Henninger TC, Macielag MJ, Tennakoon MA, Xu X. WO 2003050132, 2003
    • 14h Silvonek SS, Giller CB, Abelt CJ. Org. Prep. Proced. Int. 2005; 37: 589
    • 14i Miles KC, Mays SM, Southerland BK, Auvil TJ, Ketcha DM. ARKIVOC 2009; (xiv): 181
    • 14j Azizi N, Khajeh-Amiri A, Ghafuri H, Bolourtchian M, Saidi MR. Synlett 2009; 2245
    • 14k Zuo B, Chen J, Liu M, Ding J, Wu H, Su W. J. Chem. Res. 2009; 14
    • 14l Zhang XX, Shi JC. Tetrahedron 2011; 67: 898
    • 14m Baig RB. N, Varma RS. Green Chem. 2013; 15: 398
    • 14n Grzybowski M, Gryko D, Sadowski B, Strassel K, Hayoz P, Kaelblein D. WO 2017068009, 2017
    • 15a Minster DK, Jordis U, Evans DL, Hecht SM. J. Org. Chem. 1978; 43: 1624
    • 15b Wanner KT, Höfner G. Arch. Pharm. 1989; 322: 93
    • 15c Brandänge S, Holmgren E, Leijonmarck H, Rodriguez B. Acta Chem. Scand. 1995; 49: 922
    • 15d Basha FZ, Hinman MM, Kopecka HA, Searle XB, Sowin TJ, Wodka D, Surowy C, Faltynek CR. WO 2001044223, 2001
    • 15e Priepke H, Pfau R, Gerlach K, Gillard J, Bauer E, Wienen W, Handschuh S, Nar H. WO 2004056784, 2004
    • 15f Aggarwal VK, Charmant JP, Fuentes D, Harvey JN, Hynd G, Ohara D, Picoul W, Robiette R, Smith C, Vasse JL, Winn CL. J. Am. Chem. Soc. 2006; 128: 2105
    • 15g Ammon S, Beerli R, Widler L. WO 2007020046, 2007
    • 15h Sakakura A, Umemura S, Ishihara K. Synlett 2009; 1647
    • 15i Ramirez TA, Zhao B, Shi Y. Tetrahedron Lett. 2010; 51: 1822
    • 15j Chen WQ, Zhang YL, Li HJ, Nan X, Liu Y, Wu YC. Synthesis 2019; 51: 3651
    • 15k Law JA, Bartfield NM, Frederich JH. Angew. Chem. Int. Ed. 2021; 60: 14360

      For selected examples, see:
    • 16a Reddy GS. Chem. Ind. (London, U. K.) 1965; 1426
    • 16b Becker HG. O, Richter HJ. J. Prakt. Chem. 1974; 316: 1013
    • 16c Boger DL, Patel M. J. Org. Chem. 1987; 52: 2319
    • 16d Voronkov MG, Vlasov AV, Vlasova NN. Russ. J. Org. Chem. 2010; 46: 1838
    • 16e Shafi S, Kedziorek M, Grela K. Synlett 2011; 124
    • 16f Liu FY, Liu YX, Chen YP, Sun ZL, Wang B. ChemistrySelect 2017; 2: 4638
    • 16g Guo WJ, Huang JJ, Wu HX, Liu TT, Luo ZF, Jian JS, Zeng Z. Org. Chem. Front. 2018; 5: 2950
    • 17a Wessjohann LA, Morejon MC, Ojeda GM, Rhoden CR, Rivera DG. J. Org. Chem. 2016; 81: 6535
    • 17b Neves RA. W, Stark S, Morejon MC, Westermann B, Wessjohann LA. Tetrahedron Lett. 2012; 53: 5360
    • 17c Maehara T, Kanno R, Yokoshima S, Fukuyama T. Org. Lett. 2012; 14: 1946
  • 18 Although it is conceivable that the electrochemically generated N-acyliminium undergoes a reversible ring-opening pathway to form an amide intermediate similar to that invoked in the Ugi-type multicomponent reaction (see ref. 17), the existence of the cyclic N,O-acetal has been confirmed by LRMS analysis of the electrolysis product.
  • 19 The O-acetylated Hyp variant was formed during SPPS as a result of repeated capping steps with Ac2O/pyridine. Both peptides were subjected separately to the aromatization protocol.

    • To simplify the peptide synthesis, side-chain unprotected Hyp was incorporated and capping steps were omitted to avoid the formation of O-acetylated Hyp. The incorporation of Fmoc-Hyp(Ac)-OH was avoided due to the tendency of this amino acid to aggregate; see:
    • 20a Torres JL, Pagans E, Clapés P. Lett. Pept. Sci. 1996; 3: 61
    • 20b Isidro-Llobet A, Álvarez M, Albericio F. Chem. Rev. 2009; 109: 2455
  • 21 Bollhagen R, Schmiedberger M, Barlos K, Grell E. J. Chem. Soc., Chem. Commun. 1994; 2559
  • 22 Reekie TA, Williams CM, Rendina LM, Kassiou M. J. Med. Chem. 2019; 62: 1078
  • 23 Cockle SA, Kaplan H, Hefford MA, Young NM. Anal. Biochem. 1982; 125: 210

    • For selected examples, see:
    • 24a Micovic VM, Mihailovic ML. J. Org. Chem. 1953; 18: 1190
    • 24b Moulin A, Martinez J, Fehrentz JA. J. Pept. Sci. 2007; 13: 1
    • 24c Endo K, Hamada D, Yakeishi S, Shibata T. Angew. Chem. Int. Ed. 2013; 52: 606
  • 25 The addition of base (e.g., DBU) has been explored as a means of converting pyrrolic carbinols into the corresponding aldehydes; see: Dixon DJ, Scott MS, Luckhurst CA. Synlett 2003; 2317

    • For selected examples, see:
    • 26a Liu CF, Tam JP. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 6584
    • 26b Brask J, Jensen KJ. J. Pept. Sci. 2000; 6: 290
    • 26c Spears RJ, Fascione MA. Org. Biomol. Chem. 2016; 14: 7622
    • 26d Malins LR, deGruyter JN, Robbins KJ, Scola PM, Eastgate MD, Ghadiri MR, Baran PS. J. Am. Chem. Soc. 2017; 139: 5233
    • 26e Adebomi V, Cohen RD, Wills R, Chavers HA. H, Martin GE, Raj M. Angew. Chem. Int. Ed. 2019; 58: 19073
    • 27a Schwartz BD, Zhang MY, Attard RH, Gardiner MG, Malins LR. Chem. Eur. J. 2020; 26: 2808
    • 27b Wlochal J, Davies RD. M, Burton J. Org. Lett. 2014; 16: 4094
    • 27c Houston SD, Xing H, Bernhardt PV, Vanden Berg TJ, Tsanaktsidis J, Savage GP, Williams CM. Chem. Eur. J. 2019; 25: 2735