Synlett 2021; 32(10): 1004-1008
DOI: 10.1055/s-0040-1720461
letter

Copper-Catalyzed Synthesis of β- and δ-Carbolines by Double N-Arylation of Primary Amines

Ban Van Phuc
a   Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
,
b   Faculty of Chemistry, Hanoi University of Science, Vietnam National University (VNU), 19-Le Thanh Tong, Hanoi, Vietnam
,
Nguyen Minh Quan
c   Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
,
Nguyen Ngoc Tuan
a   Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
,
Nguyen Quang An
a   Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
,
Nguyen Van Tuyen
a   Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
c   Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
,
Hoang Le Tuan Anh
d   Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
,
a   Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
c   Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
,
Tuan Thanh Dang
b   Faculty of Chemistry, Hanoi University of Science, Vietnam National University (VNU), 19-Le Thanh Tong, Hanoi, Vietnam
,
Peter Langer
e   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
f   Leibniz Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 3a, 18059 Rostock, Germany
› Author Affiliations
This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED, Grant Number 104.01-2020.35).


Abstract

Two efficient and practical approaches are reported for the synthesis of β- and δ-carbolines from 3,4-dibromopyridine. The synthesis is based on site-selective Cu-catalyzed double C–N coupling reactions and subsequent annulations by twofold Pd-catalyzed C–N coupling with amines.

Supporting Information



Publication History

Received: 02 February 2021

Accepted after revision: 21 March 2021

Article published online:
31 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Cao R, Peng W, Wang Z, Xu A. Curr. Med. Chem. 2007; 14: 479
    • 1b Alekseyev RS, Kurkin AV, Yurovskaya MA. Chem. Heterocycl. Compd. 2009; 45: 889
    • 1c Kumar EV, Etukala JR, Ablordeppey SY. Mini.-Rev. Med. Chem. 2008; 8: 538
    • 1d Smirnova OB, Golovko TV, Granik VG. Pharm. Chem. J. 2011; 45: 389
  • 2 Dai J, Dan W, Schneider U, Wang J. Eur. J. Med. Chem. 2018; 157: 622
    • 3a Kobayashi J, Harbour GC, Gilmore J, Rinehart KL. J. Am. Chem. Soc. 1984; 106: 1526
    • 3b Rinehart KL, Kobayashi J, Harbour GC, Hughes RG, Mizsak SA, Scahill TA. J. Am. Chem. Soc. 1984; 106: 1524
  • 4 Sakai R, Higa T, Jefford CW, Bernardinelli G. J. Am. Chem. Soc. 1986; 108: 6404
    • 5a Uredi D, Motati DR, Watkins EB. Org. Lett. 2018; 20: 6336
    • 5b Kumar S, Singh A, Kumar K, Kumar V. Eur. J. Med. Chem. 2017; 142: 48
    • 6a Subbaraju GV, Kavitha J, Rajasekhar D, Jimenez JI. J. Nat. Prod. 2004; 67: 461
    • 6b Paulo A, Gomes ET, Steele J, Warhurst DC, Houghton PJ. Planta Med. 2000; 66: 30
    • 6c Sharaf MH. M, Schiff PL, Tackie AN, Phoebe CH, Johnson RL, Minick D, Andrews CW, Crouch RC, Martin GE. J. Heterocycl. Chem. 1996; 33: 789
    • 6d Yang S.-W, Abdel-Kader M, Malone S, Werkhoven MC. M, Wisse JH, Bursuker I, Neddermann K, Fairchild C, Raventos-Suarez C, Menendez AT, Lane K, Kingston DG. I. J. Nat. Prod. 1999; 62: 976
    • 7a Okamoto T, Akase T, Izumi S, Inaba S, Yamamoto H. JP 7220196, 1972 ; Chem. Abstr. 1972, 152142
    • 7b Winters J, Di Mola N. West German Patent 2442513, 1975 , Chem. Abstr. 1975, 156255
    • 8a Seville S, Phillips RM, Shnyder SD, Wright CW. Bioorg. Med. Chem. 2007; 15: 6353
    • 8b Riechert-Krause F, Eick A, Grunert R, Bednarski PJ, Weisz K. Bioorg. Med. Chem. Lett. 2011; 21: 2380
    • 8c Li B, Yue Z.-Z, Feng J.-M, He Q, Miao Z.-H, Yang C.-H. Eur. J. Med. Chem. 2013; 66: 531
    • 8d Rajanarendar E, Govardhan Reddy K, Ramakrishna S, Nagi Reddy M, Shireesha B, Durgaiah G, Reddy YN. Bioorg. Med. Chem. Lett. 2012; 22: 6677
    • 8e Yin R, Zhang M, Hao C, Wang W, Qiu P, Wan S, Zhang L, Jiang T. Chem. Commun. 2013; 49: 8516
    • 8f Boddupally PV. L, Hahn S, Beman C, De B, Brooks TA, Gokhale V, Hurley LH. J. Med. Chem. 2012; 55: 6076
    • 8g Beauchard A, Jaunet A, Murillo L, Baldeyrou B, Lansiaux A, Chérouvrier J.-R, Domon L, Picot L, Bailly C, Besson T, Thiéry V. Eur. J. Med. Chem. 2009; 44: 3858
    • 9a Rocha e Silva LF, Montoia A, Amorim RC. N, Melo MR, Henrique MC, Nunomura SM, Costa MR. F, Andrade Neto VF, Costa DS, Dantas G, Lavrado J, Moreira R, Paulo A, Pinto AC, Tadei WP, Zacardi RS, Eberlin MN, Pohlit AM. Phytomedicine 2012; 20: 71
    • 9b Van Baelen G, Hostyn S, Dhooghe L, Tapolcsányi P, Mátyus P, Lemière G, Dommisse R, Kaiser M, Brun R, Cos P, Maes L, Hajós G, Riedl Z, Nagy I, Maes BU. W, Pieters L. Bioorg. Med. Chem. 2009; 17: 7209
  • 10 Queiroz M.-JR. P, Ferreira IC. F. R, Gaetano YD, Kirsch G, Calhelha RC, Estevinho LM. Bioorg. Med. Chem. 2006; 14: 6827
    • 11a Sako K, Aoyama H, Sato S, Hashimoto Y, Baba M. Bioorg. Med. Chem. 2008; 16: 3780
    • 11b Peczynska-Czoch W, Pognan F, Kaczmarek L, Boratynski J. J. Med. Chem. 1994; 37: 3503
    • 12a Moon JS, Ahn DH, Kim SW, Lee SY, Lee JY, Kwon JH. RSC Adv. 2018; 8: 17025
    • 12b Im Y, Lee JY. Chem. Commun. 2013; 49: 5948
    • 12c Junyou P, Hong H. WO2018095396A1, 2017
  • 13 Peng H, Chen X, Chen Y, He Q, Xie Y, Yang C. Tetrahedron 2011; 67: 5725
  • 14 Movassaghi M, Hill MD. Org. Lett. 2008; 10: 3485
  • 15 Audia JE, Droste JJ, Nissen JS, Murdoch GL, Evrard DA. J. Org. Chem. 1996; 61: 7937
  • 16 Laha JK, Barolo SM, Rossi RA, Cuny GD. J. Org. Chem. 2011; 76: 6421
    • 17a Shu C, Wang Y.-H, Zhou B, Li X.-L, Ping Y.-F, Lu X, Ye L.-W. J. Am. Chem. Soc. 2015; 137: 9567
    • 17b Nissen F, Richard V, Alayrac C, Witulski B. Chem. Commun. 2011; 47: 6656
    • 17c Li L, Chen X.-M, Wang Z.-S, Zhou B, Liu X, Lu X, Ye L.-W. ACS Catal. 2017; 7: 4004
    • 17d Iwaki T, Yasuhara A, Sakamoto T. J. Chem. Soc., Perkin Trans. 1 1999; 1505
    • 17e Zhang H, Larock RC. J. Org. Chem. 2002; 67: 9318
    • 17f Zhang H, Larock RC. Org. Lett. 2001; 3: 3083
    • 17g Too PC, Chua SH, Wong SH, Chiba S. J. Org. Chem. 2011; 76: 6159
    • 17h Ding S, Shi Z, Jiao N. Org. Lett. 2010; 12: 1540
    • 17i Namjoshi OA, Gryboski A, Fonseca GO, Van Linn ML, Wang Z.-j, Deschamps JR, Cook JM. J. Org. Chem. 2011; 76: 4721
    • 17j Tang S, Wang J, Xiong Z, Xie Z, Li D, Huang J, Zhu Q. Org. Lett. 2017; 19: 5577
    • 17k Alves Esteves CH, Smith PD, Donohoe TJ. J. Org. Chem. 2017; 82: 4435
    • 17l Kamlah A, Lirk F, Bracher F. Tetrahedron 2016; 72: 837
    • 17m Hung TQ, Hieu DT, Van Tinh D, Do HN, Nguyen Tien TA, Van Do D, Son LT, Tran NH, Van Tuyen N, Tan VM, Ehlers P, Dang TT, Langer P. Tetrahedron 2019; 75: 130569
    • 17n Yang C.-C, Tai H.-M, Sun P.-J. J. Chem. Soc., Perkin Trans. 1 1997; 2843
    • 17o Papamicaël C, Quéguiner G, Bourguignon J, Dupas G. Tetrahedron 2001; 57: 5385
    • 17p Mazu TK, Etukala JR, Jacob MR, Khan SI, Walker LA, Ablordeppey SY. Eur. J. Med. Chem. 2011; 46: 2378
    • 17q Detert H, Letessier J. Synthesis 2011; 290
    • 17r Cao J, Xu Y, Kong Y, Cui Y, Hu Z, Wang G, Deng Y, Lai G. Org. Lett. 2012; 14: 38
    • 17s Hung TQ, Dang TT, Janke J, Villinger A, Langer P. Org. Biomol. Chem. 2015; 13: 1375
  • 18 Do HN, Quan NM, Van Phuc B, Van Tinh D, Tien NQ, Nga TT. T, Nguyen VT, Hung TQ, Dang TT, Langer P. Synlett 2021; 32: 611
  • 20 Preparation of 3-Bromo-2-(2-bromophenyl)pyridine (1a) 2,3-Dibromopyridine (2.00 g, 8.44 mmol), 2-bromophenyl boronic acid (1.70 g, 8.44 mmol), and Pd(PPh3)4 (488 mg, 0.422 mmol) were added to a 250 mL Schlenk flask. The mixture was backfilled several times with argon. To the mixture were added K2CO3 (1 M, 25 mL), 5 drops of aqueous KOH (10%) and 35 mL of THF, then backfilled several times with argon. The reaction was heated at 70 °C for 18 h. The solvent was evaporated in vacuo. The residue was extracted with ethyl acetate and water. The organic layer was dried over MgSO4, filtered, and the solvent was evaporated in vacuo. The yellow residue was purified by column chromatography (silica gel, hexane/ethyl acetate = 20:1) to yield 3-bromo-2-(2-bromophenyl)pyridine (1a)17s (2.20 g, 85%) as a colorless oil.
  • 21 General Procedure for the Synthesis of 5H-Pyrido[3,2-b]indoles 3a–o 3-Bromo-2-(2-bromophenyl)pyridine (1a, 100 mg, 0.32 mmol), 4-fluoroaniline (116 mg, 0.958 mmol), copper(I) iodide (12 mg, 0.064 mmol, Aldrich, 99%), l-proline (11 mg, 0.096 mmol), and K2CO3 (132 mg, 0.958 mmol) were dissolved in DMSO (1.5 mL) and heated at 120 °C for 24 h. After cooling, the reaction mixture was poured into water (50 mL) and extracted with ethyl acetate (3 × 50 mL). The organic layer was dried over MgSO4, filtered, and the solvent was evaporated in vacuo. The residue was purified by column chromatography (silica gel, hexane/ethyl acetate = 5:1) to yield 5-(4-methylbenzyl)-5H-pyrido[3,2-b]indole (3b, 85 mg, 95%) as a white solid. 1H NMR (500 MHz, CDCl3): δ = 8.57 (s, 1 H), 8.46 (s, 1 H), 7.65 (s, 1 H), 7.56–7.50 (m, 1 H), 7.42 (d, J = 8.2 Hz, 1 H), 7.35 (d, J = 6.8 Hz, 2 H), 7.07 (d, J = 7.9 Hz, 2 H), 7.01 (d, J = 7.9 Hz, 2 H), 5.47 (s, 2 H), 2.29 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 141.4, 137.5, 133.5, 129.6, 127.9, 126.4, 120.2, 109.3, 21.1. HRMS (ESI): m/z calcd for C19H16N2 [M + 1]+: 273.1386; found: 273.1401.
  • 22 Preparation of 3-Bromo-4-(2-bromophenyl)pyridine (1b) 3,4-Dibromopyridine (2.00 g, 8.44 mmol), 2-bromophenylboronic acid (1.70 g, 8.44 mmol), and Pd(PPh3)4 (488 mg, 0.422 mmol) were added to a 250 mL Schlenk flask. The mixture was backfilled several times with argon. To the mixture were added K2CO3 (1 M, 25 mL), 5 drops of aqueous KOH (10%), and 35 mL of THF, then backfilled several times with argon. The reaction was heated at 70 °C for 18 h. The solvent was evaporated in vacuo. The residue was extracted with ethyl acetate and water. The organic layer was dried over MgSO4, filtered, and the solvent was evaporated in vacuo. The residue was purified by column chromatography (silica gel, hexane/ethyl acetate = 20:1) to yield 3-bromo-4-(2-bromophenyl)pyridine (1b)17m (2.30 g, 80%) as a colorless syrup.
  • 23 General Procedure for the Synthesis of 9H-pyrido[3,4-b]indoles 4a–h 3-Bromo-2-(2-bromophenyl)pyridine (1a, 100 mg, 0.32 mmol), 4-fluoroaniline (116 mg, 0.958 mmol), copper(I) iodide (15.4 mg, 0.08 mmol), l-proline (11 mg, 0.096 mmol), and K2CO3 (132 mg, 0.958 mmol) were dissolved in DMSO (1.5 mL) and heated at 160 °C for 24 h. After cooling, the reaction mixture was poured into water (50 mL) and extracted with ethyl acetate (3 × 50 mL). The organic layer was dried over MgSO4, filtered, and the solvent was evaporated in vacuo. The residue was purified by column chromatography (silica gel, hexane/ethyl acetate = 5:1) to yield 9-phenethyl-9H-pyrido[3,4-b]indole (4e, 61 mg, 70%) as a white solid. 1H NMR (500 MHz, CDCl3): δ = 8.72 (s, 1 H), 8.43 (d, J = 4.9 Hz, 1 H), 8.14 (dt, J = 7.9, 1.0 Hz, 1 H), 7.95 (d, J = 5.2 Hz, 1 H), 7.56 (ddd, J = 8.4, 7.1, 1.2 Hz, 1 H), 7.39–7.33 (m, 1 H), 7.32–7.23 (m, 2 H), 7.25–7.20 (m, 1 H), 7.23–7.17 (m, 2 H), 7.17 (ddt, J = 7.7, 5.7, 1.6 Hz, 1 H), 7.11–7.05 (m, 2 H), 4.59 (t, J = 7.4 Hz, 2 H), 3.15 (t, J = 7.4 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 141.1, 138.5, 138.2, 131.7, 128.8, 128.7, 128.7, 128.6, 128.5, 126.9, 126.4, 122.0, 121.1, 119.8, 109.4, 45.3, 35.5. HRMS (ESI): m/z calcd for C19H16N2 [M + 1]+: 273.1386; found: 273.1400.