Synthesis 2022; 54(22): 5089-5098
DOI: 10.1055/s-0040-1719894
paper

Convenient Approach to Bicyclic Sultams

Sergiy L. Filimonchuk
a   Department of Organophosphorus Chemistry, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
,
Kostiantyn Nazarenko
a   Department of Organophosphorus Chemistry, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
b   Enamine Ltd, Oleksandra Matrosova Street 23, Kyiv, 01103, Ukraine
,
Tetiana Shvydenko
a   Department of Organophosphorus Chemistry, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
,
Kostiantyn Shvydenko
a   Department of Organophosphorus Chemistry, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
,
Eduard B. Rusanov
a   Department of Organophosphorus Chemistry, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
,
a   Department of Organophosphorus Chemistry, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
› Author Affiliations


Abstract

A method for the synthesis of aminomethyl-substituted five-membered sultams has been developed. The aminomethyl sultams were synthesized from the corresponding iodomethyl derivatives by nucleophilic substitution of the iodine atom with sodium azide followed by reduction on Pd/C. This method was further expanded to side-chain-substituted sultams, starting from amino acid esters, to obtain aminomethyl-containing bicycles. The simple practical procedure and available starting amino acid esters, including chiral examples, make various bicyclic sultams readily available.

Supporting Information



Publication History

Received: 03 December 2021

Accepted after revision: 22 December 2021

Article published online:
15 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Curr. Med. Chem. 2003; 10: 925
  • 2 Inagaki M, Tsuri T, Jyoyama H, Ono T, Yamada K, Kobayashi M, Hori Y, Arimura A, Yasui K, Ohno K, Kakudo S, Koizumi K, Suzuki R, Kato M, Kawai S, Matsumoto S. J. Med. Chem. 2000; 43: 2040
  • 3 Hanessian S, Sailes H, Therrien E. Tetrahedron 2003; 59: 7047
  • 4 Drews J. Science 2000; 287: 1960
  • 5 Bungard CJ, Williams PD, Schulz J, Wiscount CM, Holloway MK, Loughran HM, Manikowski JJ, Su H.-P, Bennett DJ, Chang L, Chu X.-J, Crespo A, Dwyer MP, Keertikar K, Morriello GJ, Stamford AW, Waddell ST, Zhong B, Hu B, Ji T, Diamond TL, Bahnck-Teets C, Carroll SS, Fay JF, Min X, Morris W, Ballard JE, Miller MD, McCauley JA. ACS Med. Chem. Lett. 2017; 8: 1292
  • 6 Purandare AV, Fink BE, Johnson WL, Hart AC, He L, Huynh TN, Inghrim J, Mastalerz H, Sang X, Tarby CM, Wan H, Vaccaro W, Zhang G, Zhao Y, Zimmermann K, Zhang Y, Chen L, Chen B, Tokarski JS, Gavai AV. WO2014011974A1, 2014
  • 7 Gleave RJ, Hachisu S, Vile S, Bertheleme N, Ward SE. WO2012004604A1, 2012
  • 8 Knust H, Nettekoven M, Ratni H, Wu X. US2008312216A1, 2008
  • 9 Blahun OP, Melnychenko H, Kuchkovska YO, Zhersh S, Tolmachev AA, Grygorenko OO. Eur. J. Org. Chem. 2020; 3261
  • 10 Lee J, Zhong Y.-L, Reamer RA, Askin D. Org. Lett. 2003; 5: 4175
  • 11 Rassadin VA, Tomashevskiy AA, Sokolov VV, Ringe A, Magull J, de Meijere A. Eur. J. Org. Chem. 2009; 2635
  • 12 Cooper GF. Synthesis 1991; 859
  • 13 Lad N, Sharma R, Marquez VE, Mascarenhas M. Tetrahedron Lett. 2013; 54: 6307
  • 14 Shaw D, Best J, Dinnell K, Nadin A, Shearman M, Pattison C, Peachey J, Reilly M, Williams B, Wrigley J, Harrison T. Bioorg. Med. Chem. Lett. 2006; 16: 3073
  • 15 Greig IR, Tozer MJ, Wright PT. Org. Lett. 2001; 3: 369
  • 16 Rogatchov VO, Bernsmann H, Schwab P, Fröhlich R, Wibbeling B, Metz P. Tetrahedron Lett. 2002; 43: 4753
  • 17 Uddin MJ, Kikuchi M, Takedatsu K, Arai K.-I, Fujimoto T, Motoyoshiya J, Kakehi A, Iriye R, Shirai H, Yamamoto I. Synthesis 2000; 365
  • 18 Omelian TV, Dobrydnev AV, Ostapchuk EN, Volovenko YM. ChemistrySelect 2019; 4: 4933
  • 19 Omelian TV, Dobrydnev AV, Utchenko OY, Ostapchuk EN, Konovalova IS, Volovenko YM. Monatsh. Chem. 2020; 151: 1759
  • 20 Jeon KO, Rayabarapu D, Rolfe A, Volp K, Omar I, Hanson PR. Tetrahedron 2009; 65: 4992
  • 21 Jiménez-Hopkins M, Hanson PR. Org. Lett. 2008; 10: 2223
  • 22 Merten S, Fröhlich R, Kataeva O, Metz P. Adv. Synth. Catal. 2005; 347: 754
  • 23 Zhou A, Hanson PR. Org. Lett. 2008; 10: 2951
  • 24 Dauban P, Dodd RH. Tetrahedron Lett. 2001; 42: 1037
  • 25 Debnath S, Mondal S. J. Org. Chem. 2015; 80: 3940
  • 26 Majumdar KC, Mondal S. Chem. Rev. 2011; 111: 7749
  • 27 Debnath S, Mondal S. Eur. J. Org. Chem. 2018; 933
  • 28 Rassadin VA, Grosheva DS, Tomashevskiy AA, Sokolov VV, Yufit DS, Kozhushkov SI, de Meijere A. Eur. J. Org. Chem. 2010; 3481
  • 29 Zang Q, Javed S, Zhou A, Knudtson CA, Bi D, Basha FZ, Hanson PR. Heterocycles 2012; 86: 1675
  • 30 Filimonchuk SL, Nazarenko K, Shvydenko T, Shvydenko K, Rusanov E, Tolmachev A, Kostyuk A. Synlett 2020; 31: 1696
  • 31 CCDC 2115224 (7c) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 32 Fauber BP, Clagg K, Gibbons P, René O. J. Org. Chem. 2015; 80: 685
  • 33 Zhu B.-H, Zheng J.-C, Yu C.-B, Sun X.-L, Zhou Y.-G, Shen Q, Tang Y. Org. Lett. 2010; 12: 504
  • 34 King JF, Harding DR. K. J. Am. Chem. Soc. 1976; 98: 3312
  • 35 Krissel H, Puhler F, Jeffers M. WO2013178581A1, 2013