Synthesis 2022; 54(20): 4401-4425
DOI: 10.1055/s-0040-1719884
review

Biocatalytic One-Carbon Transfer – A Review

Philipp Germer
,
Jennifer N. Andexer
,
Michael Müller


In memory of Dr. Arren Bar-Even

Abstract

This review provides an overview of different C1 building blocks as substrates of enzymes, or part of their cofactors, and the resulting­ functionalized products. There is an emphasis on the broad range of possibilities of biocatalytic one-carbon extensions with C1 sources of different oxidation states. The identification of uncommon biosynthetic strategies, many of which might serve as templates for synthetic or biotechnological applications, towards one-carbon extensions is supported by recent genomic and metabolomic progress and hence we refer principally to literature spanning from 2014 to 2020.

1 Introduction

2 Methane, Methanol, and Methylamine

3 Glycine

4 Nitromethane

5 SAM and SAM Ylide

6 Other C1 Building Blocks

7 Formaldehyde and Glyoxylate as Formaldehyde Equivalents

8 Cyanide

9 Formic Acid

10 Formyl-CoA and Oxalyl-CoA

11 Carbon Monoxide

12 Carbon Dioxide

13 Conclusions



Publication History

Received: 11 September 2021

Accepted after revision: 09 December 2021

Article published online:
08 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Klungland A, Robertson AB. Free Radical Biol. Med. 2017; 107: 62
  • 2 Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland ED. P, Gomez ML, Sieracki ME, DeLong EF, Herndl GJ, Stepanauskas R. Science 2011; 333: 1296
  • 3 Stolfa DA, Einsle O, Sippl W, Jung M. Future Med. Chem. 2012; 4: 2029
  • 4 Zeisel S. Nutrients 2017; 9: 445
  • 5 Zhao R, Goldman ID. Oncogene 2003; 22: 7431
  • 6 Clare CE, Brassington AH, Kwong WY, Sinclair KD. Annu. Rev. Anim. Biosci. 2019; 7: 263
  • 7 Ducker GS, Rabinowitz JD. Cell Metab. 2017; 25: 27
  • 8 Ragsdale SW. Vitam. Horm. 2009; 79: 293
  • 9 Spatzal T, Aksoyoglu M, Zhang L, Andrade SL. A, Schleicher E, Weber S, Rees DC, Einsle O. Science 2011; 334: 940
  • 10 Einsle O. J. Biol. Inorg. Chem. 2014; 19: 737
  • 11 Cui X, Huang R, Deng D. EnergyChem 2021; 3: 100050
  • 12 Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. Science 1997; 278: 1457
  • 13 Burke SA, Krzycki JA. J. Biol. Chem. 1997; 272: 16570
  • 14 Srinivasan G, James CM, Krzycki JA. Science 2002; 296: 1459
  • 15 Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF. Sci. Rep. 2018; 8: 12895
  • 16 Huber T, Schneider L, Präg A, Gerhardt S, Einsle O, Müller M. ChemCatChem 2014; 6: 2248
  • 17 Germer P, Gauchenova E, Walter L, Müller M. ChemCatChem 2019; 11: 4276
  • 18 Aleku GA, France SP, Man H, Mangas-Sanchez J, Montgomery SL, Sharma M, Leipold F, Hussain S, Grogan G, Turner NJ. Nat. Chem. 2017; 9: 961
  • 19 Ferguson DJ, Krzycki JA. J. Bacteriol. 1997; 179: 846
  • 20 Szegedi SS, Castro CC, Koutmos M, Garrow TA. J. Biol. Chem. 2008; 283: 8939
  • 21 Ueland PM, Holm PI, Hustad S. Clin. Chem. Lab. Med. 2005; 43: 1069
  • 22 Klee WA, Richards HH, Cantoni GL. Biochim. Biophys. Acta 1961; 54: 157
  • 23 Ducker GS, Ghergurovich JM, Mainolfi N, Suri V, Jeong SK, Hsin-Jung LiS, Friedman A, Manfredi MG, Gitai Z, Kim H, Rabinowitz JD. Proc. Natl. Acad. Sci. U.S.A. 2017; 114: 11404
  • 24 Cantoni GL. J. Biol. Chem. 1953; 204: 403
  • 25 Astner I, Schulze JO, Heuvel J, Jahn D, Schubert W.-D, Heinz DW. EMBO J. 2005; 24: 3166
  • 26 Purkarthofer T, Gruber K, Gruber-Khadjawi M, Waich K, Skranc W, Mink D, Griengl H. Angew. Chem. Int. Ed. 2006; 45: 3454
  • 27 Gruber K, Gartler G, Krammer B, Schwab H, Kratky C. J. Biol. Chem. 2004; 279: 20501
  • 28 Fuhshuku K.-I, Asano Y. J. Biotechnol. 2011; 153: 153
  • 29 Andexer J, von Langermann J, Mell A, Bocola M, Kragl U, Eggert T, Pohl M. Angew. Chem. Int. Ed. 2007; 46: 8679
  • 30 Guo C, Saifuddin M, Saravanan T, Sharifi M, Poelarends GJ. ACS Catal. 2019; 9: 4369
  • 31 Beisswenger R, Kula M.-R. Appl. Microbiol. Biotechnol. 1991; 34: 604
  • 32 Yurimoto H, Kato N, Sakai Y. Chem. Rec. 2005; 5: 367
  • 33 Waites MJ, Quayle JR. J. Gen. Microbiol. 1981; 124: 309
  • 34 Desmons S, Fauré R, Bontemps S. ACS Catal. 2019; 9: 9575
  • 35 Krakow G, Barkulis SS. Biochim. Biophys. Acta 1956; 593
  • 36 Kornberg HL, Gotto AM. Nature 1959; 183: 1791
  • 37 Jaenicke L, Koch J. Biochem. Z. 1962; 432
  • 38 Martin J, Eisoldt L, Skerra A. Nat. Catal. 2018; 1: 555
  • 39 Bornemann S, Crout DH. G, Dalton H, Hutchinson DW, Dean G, Thomson N, Turner MM. J. Chem. Soc., Perkin Trans. 1 1993; 309
  • 40 Miyazaki M, Shibue M, Ogino K, Nakamura H, Maeda H. Chem. Commun. 2001; 1800
  • 41 Lu X, Liu Y, Yang Y, Wang S, Wang Q, Wang X, Yan Z, Cheng J, Liu C, Yang X, Luo H, Yang S, Gou J, Ye L, Lu L, Zhang Z, Guo Y, Nie Y, Lin J, Li S, Tian C, Cai T, Zhuo B, Ma H, Wang W, Ma Y, Liu Y, Li Y, Jiang H. Nat. Commun. 2019; 10: 1378
  • 42 Demir AS, Ayhan P, Igdir AC, Duygu AN. Tetrahedron 2004; 60: 6509
  • 43 Poust S, Piety J, Bar-Even A, Louw C, Baker D, Keasling JD, Siegel JB. ChemBioChem 2015; 16: 1950
  • 44 Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E, Gallaher JL, Bale J, Yoshikuni Y, Gelb MH, Keasling JD, Stoddard BL, Lidstrom ME, Baker D. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 3704
  • 45 Dickens F, Williamson DH. Nature 1958; 181: 1790
  • 46 Racker E, De La Haba G, Leder IG. J. Am. Chem. Soc. 1953; 75: 1010
  • 47 Horecker BL, Smyrniotis PZ. J. Am. Chem. Soc. 1953; 75: 1009
  • 48 Kurutsch A, Richter M, Brecht V, Sprenger GA, Müller M. J. Mol. Catal. B: Enzym. 2009; 61: 56
  • 49 Wood GE, Haydock AK, Leigh JA. J. Bacteriol. 2003; 185: 2548
  • 50 Bar-Even A, Noor E, Flamholz A, Milo R. Biochim. Biophys. Acta 2013; 1827: 1039
  • 51 Whiteley HR, Osborn MJ, Huennekens FM. J. Biol. Chem. 1959; 234: 1538
  • 52 Knappe J, Blaschkowski HP, Gröbner P, Schmitt T. Eur. J. Biochem. 1974; 50: 253
  • 53 Burgener S, Cortina NS, Erb TJ. Angew. Chem. Int. Ed. 2020; 59: 5526
  • 54 Chou A, Clomburg JM, Qian S, Gonzalez R. Nat. Chem. Biol. 2019; 15: 900
  • 55 Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL. J. Biol. Chem. 1983; 258: 2364
  • 56 Ragsdale SW, Wood HG. J. Biol. Chem. 1985; 260: 3970
  • 57 Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL. Science 2002; 298: 567
  • 58 Erb TJ, Zarzycki J. Curr. Opin. Biotechnol. 2018; 49: 100
  • 59 Kai Y, Matsumura H, Izui K. Arch. Biochem. Biophys. 2003; 414: 170
  • 60 Tong L. Cell. Mol. Life Sci. 2013; 70: 863
  • 61 Tersteegen A, Linder D, Thauer RK, Hedderich R. Eur. J. Biochem. 1997; 244: 862
  • 62 Chabrière E, Vernède X, Guigliarelli B, Charon MH, Hatchikian EC, Fontecilla-Camps JC. Science 2001; 294: 2559
  • 63 Evans MC, Buchanan BB, Arnon DI. Proc. Natl. Acad. Sci. U.S.A. 1966; 55: 928
  • 64 Lupa B, Lyon D, Shaw LN, Sieprawska-Lupa M, Wiegel J. Can. J. Microbiol. 2008; 54: 75
  • 65 Tschech A, Fuchs G. Arch. Microbiol. 1989; 152: 594
  • 66 Omura H, Wieser M, Nagasawa T. Eur. J. Biochem. 1998; 253: 480
  • 67 Yoshida T, Fujita K, Nagasawa T. Biosci. Biotechnol. Biochem. 2002; 66: 2388
  • 68 Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 10631
  • 69 Graf EG, Thauer RK. FEBS Lett. 1981; 136: 165
  • 70 Hanson RS, Hanson TE. Microbiol. Rev. 1996; 60: 439
  • 71 Thauer RK. Biochemistry 2019; 58: 5198
    • 72a Moore SJ, Sowa ST, Schuchardt C, Deery E, Lawrence AD, Ramos JV, Billig S, Birkemeyer C, Chivers PT, Howard MJ, Rigby SE. J, Layer G, Warren MJ. Nature 2017; 543: 78
    • 72b Zheng K, Ngo PD, Owens VL, Yang X.-P, Mansoorabadi SO. Science 2016; 354: 339
  • 73 Scheller S, Ermler U, Shima S. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. In Handbook of Hydrocarbon and Lipid Microbiology. Boll M. Springer International; Cham: 2020: 31-60
  • 74 Semrau JD, DiSpirito AA, Yoon S. FEMS Microbiol. Rev. 2010; 34: 496
    • 75a Sauer K, Harms U, Thauer RK. Eur. J. Biochem. 1997; 243: 670
    • 75b Sousa DZ, Visser M, van Gelder AH, Boeren S, Pieterse MM, Pinkse MW. H, Verhaert PD. E. M, Vogt C, Franke S, Kümmel S, Stams AJ. M. Nat. Commun. 2018; 9: 239
  • 76 Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, Tyson GW. Nat. Rev. Microbiol. 2019; 17: 219
    • 77a Merkx M, Lippard SJ. J. Biol. Chem. 2002; 277: 5858
    • 77b Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing X.-H. Biochem. Eng. J. 2010; 49: 277
  • 78 Nayak DD, Metcalf WW. ISME J. 2019; 13: 2173
  • 79 Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK. Science 2002; 296: 1462
  • 80 Farnberger JE, Richter N, Hiebler K, Bierbaumer S, Pickl M, Skibar W, Zepeck F, Kroutil W. Commun. Chem. 2018; 1: 82
    • 81a Latypova E, Yang S, Wang Y.-S, Wang T, Chavkin TA, Hackett M, Schäfer H, Kalyuzhnaya MG. Mol. Microbiol. 2010; 75: 426
    • 81b Chen Y, Scanlan J, Song L, Crombie A, Rahman MT, Schäfer H, Murrell JC. Appl. Environ. Microbiol. 2010; 76: 4530
  • 82 Gruffaz C, Muller EE. L, Louhichi-Jelail Y, Nelli YR, Guichard G, Bringel F. Appl. Environ. Microbiol. 2014; 80: 3541
  • 83 Mindt M, Walter T, Risse JM, Wendisch VF. Front. Bioeng. Biotechnol. 2018; 6: 159
  • 84 Schrittwieser JH, Velikogne S, Kroutil W. Adv. Synth. Catal. 2015; 357: 1655
  • 85 Hönig M, Sondermann P, Turner NJ, Carreira EM. Angew. Chem. Int. Ed. 2017; 56: 8942
  • 86 Grogan G. Curr. Opin. Chem. Biol. 2018; 43: 15
  • 87 Mangas-Sanchez J, France SP, Montgomery SL, Aleku GA, Man H, Sharma M, Ramsden JI, Grogan G, Turner NJ. Curr. Opin. Chem. Biol. 2017; 37: 19
  • 88 Mayol O, Bastard K, Beloti L, Frese A, Turkenburg JP, Petit J.-L, Mariage A, Debard A, Pellouin V, Perret A, de Berardinis V, Zaparucha A, Grogan G, Vergne-Vaxelaire C. Nat. Catal. 2019; 2: 324
  • 89 Sharma M, Mangas-Sanchez J, France SP, Aleku GA, Montgomery SL, Ramsden JI, Turner NJ, Grogan G. ACS Catal. 2018; 8: 11534
  • 90 Froese DS, Fowler B, Baumgartner MR. J. Inherit. Metab. Dis. 2019; 42: 673
  • 91 Hong Y, Ren J, Zhang X, Wang W, Zeng A.-P. Curr. Opin. Biotechnol. 2019; 64: 70
  • 92 Alves A, Bassot A, Bulteau A.-L, Pirola L, Morio B. Nutrients 2019; 11: 1356
  • 93 Fernandes HS, Ramos MJ, Cerqueira NM. F. S. A. ACS Catal. 2018; 8: 10096
  • 94 Du Y.-L, Ryan KS. Nat. Prod. Rep. 2019; 36: 430
  • 95 Layer G, Reichelt J, Jahn D, Heinz DW. Protein Sci. 2010; 19: 1137
  • 96 Henry L. C. R. Hebd. Séances Acad. Sci. 1895; 120: 1265
    • 97a Acharya C, Achari A, Jaisankar P. Tetrahedron Lett. 2018; 59: 663
    • 97b Gruber-Khadjawi M, Purkarthofer T, Skranc W, Griengl H. Adv. Synth. Catal. 2007; 349: 1445
    • 97c Tang R.-C, Guan Z, He Y.-H, Zhu W. J. Mol. Catal. B: Enzym. 2010; 63: 62
    • 97d Yu X, Pérez B, Zhang Z, Gao R, Guo Z. Green Chem. 2016; 18: 2753
  • 98 Milner SE, Moody TS, Maguire AR. Eur. J. Org. Chem. 2012; 2012: 3059
  • 99 Janicki I, Łyżwa P, Kiełbasiński P. Bioorg. Chem. 2020; 94: 103377
  • 100 Garrabou X, Verez R, Hilvert D. J. Am. Chem. Soc. 2017; 139: 103
  • 101 Nödling AR, Świderek K, Castillo R, Hall JW, Angelastro A, Morrill LC, Jin Y, Tsai Y.-H, Moliner V, Luk LY. P. Angew. Chem. Int. Ed. 2018; 57: 12478
  • 102 Dundas CM, Demonte D, Park S. Appl. Microbiol. Biotechnol. 2013; 97: 9343
  • 103 Gotoh H, Ishikawa H, Hayashi Y. Org. Lett. 2007; 9: 5307
  • 104 Baddiley J, Cantoni GL, Jamieson GA. J. Chem. Soc. 1953; 2662
  • 105 Fujimori DG. Curr. Opin. Chem. Biol. 2013; 17: 597
  • 106 Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. Nucleic Acids Res. 2001; 29: 1097
  • 107 Bauerle MR, Schwalm EL, Booker SJ. J. Biol. Chem. 2015; 290: 3995
  • 108 Yokoyama K, Lilla EA. Nat. Prod. Rep. 2018; 35: 660
  • 109 Yang H, McDaniel EC, Impano S, Byer AS, Jodts RJ, Yokoyama K, Broderick WE, Broderick JB, Hoffman BM. J. Am. Chem. Soc. 2019; 141: 12139
  • 110 Byer AS, Yang H, McDaniel EC, Kathiresan V, Impano S, Pagnier A, Watts H, Denler C, Vagstad AL, Piel J, Duschene KS, Shepard EM, Shields TP, Scott LG, Lilla EA, Yokoyama K, Broderick WE, Hoffman BM, Broderick JB. J. Am. Chem. Soc. 2018; 140: 8634
  • 111 Broderick WE, Broderick JB. J. Biol. Inorg. Chem. 2019; 24: 769
  • 112 Wang SC. Nat. Prod. Rep. 2018; 35: 707
  • 113 Sommer-Kamann C, Fries A, Mordhorst S, Andexer JN, Müller M. Angew. Chem. Int. Ed. 2017; 56: 4033
  • 114 Marous DR, Lloyd EP, Buller AR, Moshos KA, Grove TL, Blaszczyk AJ, Booker SJ, Townsend CA. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 10354
  • 115 Sinner EK, Lichstrahl MS, Li R, Marous DR, Townsend CA. Chem. Commun. 2019; 55: 14934
    • 116a Wang Y, Schnell B, Baumann S, Müller R, Begley TP. J. Am. Chem. Soc. 2017; 139: 1742
    • 116b Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Hüttel S, Harmrolfs K, Stadler M, Müller R. Angew. Chem. Int. Ed. 2014; 53: 14605
  • 117 Wang Y, Schnell B, Müller R, Begley TP. Methods Enzymol. 2018; 606: 199
  • 118 Wang Y, Begley TP. J. Am. Chem. Soc. 2020; 142: 9944
    • 119a Parent A, Guillot A, Benjdia A, Chartier G, Leprince J, Berteau O. J. Am. Chem. Soc. 2016; 138: 15515
    • 119b Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J. Nat. Chem. 2017; 9: 387
  • 120 Xie Y, Wang B, Liu J, Zhou J, Ma J, Huang H, Ju J. ChemBioChem 2012; 13: 2745
  • 121 Mahlert C, Kopp F, Thirlway J, Micklefield J, Marahiel MA. J. Am. Chem. Soc. 2007; 129: 12011
  • 122 Milne C, Powell A, Jim J, Al Nakeeb M, Smith CP, Micklefield J. J. Am. Chem. Soc. 2006; 128: 11250
  • 123 Zou Y, Fang Q, Yin H, Liang Z, Kong D, Bai L, Deng Z, Lin S. Angew. Chem. Int. Ed. 2013; 52: 12951
  • 124 Kong D, Zou Y, Zhang Z, Xu F, Brock NL, Zhang L, Deng Z, Lin S. Sci. Rep. 2016; 6: 20273
  • 125 Zou X.-W, Liu Y.-C, Hsu N.-S, Huang C.-J, Lyu S.-Y, Chan H.-C, Chang C.-Y, Yeh H.-W, Lin K.-H, Wu C.-J, Tsai M.-D, Li T.-L. Acta Crystallogr., Sect. D 2014; 70: 1549
  • 126 Huang Y.-T, Lyu S.-Y, Chuang P.-H, Hsu N.-S, Li Y.-S, Chan H.-C, Huang C.-J, Liu Y.-C, Wu C.-J, Yang W.-B, Li T.-L. ChemBioChem 2009; 10: 2480
  • 127 Bennett MR, Shepherd SA, Cronin VA, Micklefield J. Curr. Opin. Chem. Biol. 2017; 37: 97
  • 128 Steffensky M, Mühlenweg A, Wang Z.-X, Li S.-M, Heide L. Antimicrob. Agents Chemother. 2000; 44: 1214
  • 129 Pavkov-Keller T, Steiner K, Faber M, Tengg M, Schwab H, Gruber-Khadjawi M, Gruber K. PLoS One 2017; 12: e0171056
  • 130 Sadler JC, Chung C.-WH, Mosley JE, Burley GA, Humphreys LD. ACS Chem. Biol. 2017; 12: 374
  • 131 Pacholec M, Tao J, Walsh CT. Biochemistry 2005; 44: 14969
  • 132 Stecher H, Tengg M, Ueberbacher BJ, Remler P, Schwab H, Griengl H, Gruber-Khadjawi M. Angew. Chem. Int. Ed. 2009; 48: 9546
    • 133a Dalhoff C, Lukinavičius G, Klimasauskas S, Weinhold E. Nat. Chem. Biol. 2006; 2: 31
    • 133b Zhang J, Zheng YG. ACS Chem. Biol. 2016; 11: 583
    • 133c Huber TD, Johnson BR, Zhang J, Thorson JS. Curr. Opin. Biotechnol. 2016; 42: 189
  • 134 Tengg M, Stecher H, Remler P, Eiteljörg I, Schwab H, Gruber-Khadjawi M. J. Mol. Catal. B: Enzym. 2012; 84: 2
  • 135 Wang P.-H, Chen Y.-L, Wei ST.-S, Wu K, Lee T.-H, Wu T.-Y, Chiang Y.-R. Proc. Natl. Acad. Sci. U.S.A. 2020; 117: 1395
  • 136 Jacoby C, Krull J, Andexer J, Jehmlich N, von Bergen M, Brüls T, Boll M. mBio 2020; 11: 4
  • 137 Bridwell-Rabb J, Grell TA. J, Drennan CL. Annu. Rev. Biochem. 2018; 87: 555
  • 138 Lee PT, Hsu AY, Ha HT, Clarke CF. J. Bacteriol. 1997; 179: 1748
  • 139 Dai Y.-N, Zhou K, Cao D.-D, Jiang Y.-L, Meng F, Chi C.-B, Ren Y.-M, Chen Y, Zhou C.-Z. Acta Crystallogr., Sect. D 2014; 70: 2085
  • 140 Fu C.-Y, Tang M.-C, Peng C, Li L, He Y.-L, Liu W, Tang G.-L. J. Microbiol. Biotechnol. 2009; 19: 439
  • 141 Li L, Deng W, Song J, Ding W, Zhao Q.-F, Peng C, Song W.-W, Tang G.-L, Liu W. J. Bacteriol. 2008; 190: 251
  • 142 Crnovcić I, Süssmuth R, Keller U. Biochemistry 2010; 49: 9698
  • 143 Li W, Khullar A, Chou S, Sacramo A, Gerratana B. Appl. Environ. Microbiol. 2009; 75: 2869
  • 144 Keller U, Lang M, Crnovcic I, Pfennig F, Schauwecker F. J. Bacteriol. 2010; 192: 2583
  • 145 Hu Y, Phelan V, Ntai I, Farnet CM, Zazopoulos E, Bachmann BO. Chem. Biol. 2007; 7: 691
  • 146 Chen S.-C, Huang C.-H, Lai S.-J, Liu J.-S, Fu P.-K, Tseng S.-T, Yang CS, Lai M.-C, Ko T.-P, Chen Y. Sci. Rep. 2015; 5: 10100
  • 147 Tengg M, Stecher H, Offner L, Plasch K, Anderl F, Weber H, Schwab H, Gruber-Khadjawi M. ChemCatChem 2016; 8: 1354
  • 148 Lemfack MC, Brandt W, Krüger K, Gurowietz A, Djifack J, Jung J.-P, Hopf M, Noack H, Junker B, von Reuß S, Piechulla B. Sci. Rep. 2021; 11: 3182
  • 149 Brock NL, Ravella SR, Schulz S, Dickschat JS. Angew. Chem. Int. Ed. 2013; 52: 2100
  • 150 Drummond L, Kschowak MJ, Breitenbach J, Wolff H, Shi Y.-M, Schrader J, Bode HB, Sandmann G, Buchhaupt M. ACS Synth. Biol. 2019; 8: 1303
  • 151 Schönherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
  • 152 Struck A.-W, Thompson ML, Wong LS, Micklefield J. ChemBioChem 2012; 13: 2642
    • 153a Mordhorst S, Siegrist J, Müller M, Richter M, Andexer JN. Angew. Chem. Int. Ed. 2017; 56: 4037
    • 153b Popadic D, Mhaindarkar D, Thai MH. N. D, Hailes HC, Mordhorst S, Andexer JN. RSC Chem. Biol. 2021; 2: 883
    • 154a Liao C, Seebeck FP. Nat. Catal. 2019; 2: 696
    • 154b Liao C, Seebeck FP. Angew. Chem. Int. Ed. 2020; 59: 7184
  • 155 Mordhorst S, Andexer JN. Nat. Prod. Rep. 2020; 37: 1316
  • 156 Kim J, Xiao H, Bonanno JB, Kalyanaraman C, Brown S, Tang X, Al-Obaidi NF, Patskovsky Y, Babbitt PC, Jacobson MP, Lee Y.-S, Almo SC. Nature 2013; 498: 123
  • 157 Kim J, Xiao H, Koh J, Wang Y, Bonanno JB, Thomas K, Babbitt PC, Brown S, Lee Y.-S, Almo SC. Nucleic Acids Res. 2015; 43: 4602
  • 158 Herbert AJ, Shepherd SA, Cronin VA, Bennett MR, Sung R, Micklefield J. Angew. Chem. Int. Ed. 2020; 59: 14950
  • 159 Boden R, Hutt LP. Aerobic Utilization of Hydrocarbons, Oils and Lipids. In Handbook of Hydrocarbon and Lipid Microbiology. Rojo F. Springer International; Cham: 2019: 421-464
  • 160 North JA, Narrowe AB, Xiong W, Byerly KM, Zhao G, Young SJ, Murali S, Wildenthal JA, Cannon WR, Wrighton KC, Hettich RL, Tabita FR. Science 2020; 369: 1094
  • 161 Erb TJ, Evans BS, Cho K, Warlick BP, Sriram J, Wood BM, Imker HJ, Sweedler JV, Tabita FR, Gerlt JA. Nat. Chem. Biol. 2012; 8: 926
  • 162 Wu X.-F, Natte K. Adv. Synth. Catal. 2016; 358: 336
  • 163 Jiang X, Wang C, Wei Y, Xue D, Liu Z, Xiao J. Chem. Eur. J. 2014; 20: 58
  • 164 Kawai K, Li Y.-S, Song M.-F, Kasai H. Bioorg. Med. Chem. Lett. 2010; 20: 260
  • 165 Xu J, Deng R, Chen J, Tang X, Zhao J. Adv. Synth. Catal. 2019; 361: 5144
    • 166a Friend C, Scher W, Holland JG, Sato T. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 378
    • 166b Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. Clin. Epigenet. 2019; 11: 174
  • 167 Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, Timmermann B, Selevsek N, Schlapbach R, Gmuender H, Gotta S, Geraedts J, Herwig R, Kleinjans J, Caiment F. Sci. Rep. 2019; 9: 4641
  • 168 Simon RC, Busto E, Richter N, Resch V, Houk KN, Kroutil W. Nat. Commun. 2016; 7: 13323
    • 169a Mejía E, Togni A. ACS Catal. 2012; 2: 521
    • 169b Ye Y, Lee SH, Sanford MS. Org. Lett. 2011; 13: 5464
    • 169c Seo S, Taylor JB, Greaney MF. Chem. Commun. 2013; 49: 6385
    • 169d Yang Y.-D, Iwamoto K, Tokunaga E, Shibata N. Chem. Commun. 2013; 49: 5510
  • 170 Butlerow A. C. R. Hebd. Seances Acad. Sci. 1861; 53: 145
    • 171a Mizuno T, Weiss AH. Adv. Carbohydr. Chem. Biochem. 1974; 29: 173
    • 171b Delidovich IV, Simonov AN, Taran OP, Parmon VN. ChemSusChem 2014; 7: 1833
  • 172 Breslow R. Tetrahedron Lett. 1959; 1: 22
  • 173 Castells J, López-Calhorra F, Geijo F. Carbohydr. Res. 1982; 116: 197
  • 174 Koivusalo M, Baumann M, Uotila L. FEBS Lett. 1989; 257: 105
    • 175a Vorholt JA, Marx CJ, Lidstrom ME, Thauer RK. J. Bacteriol. 2000; 182: 6645
    • 175b Marx CJ, Chistoserdova L, Lidstrom ME. J. Bacteriol. 2003; 185: 7160
  • 176 Kluger R, Tittmann K. Chem. Rev. 2008; 108: 1797
  • 177 Pohl M, Sprenger GA, Müller M. Curr. Opin. Biotechnol. 2004; 15: 335
  • 178 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
  • 179 Stetter H. Angew. Chem. Int. Ed. 1976; 15: 639
  • 180 Cosp A, Dresen C, Pohl M, Walter L, Röhr C, Müller M. Adv. Synth. Catal. 2008; 350: 759
  • 181 Dresen C, Richter M, Pohl M, Lüdeke S, Müller M. Angew. Chem. Int. Ed. 2010; 49: 6600
    • 182a Corey EJ, Seebach D. Angew. Chem. Int. Ed. 1965; 4: 1077
    • 182b Seebach D, Corey EJ. J. Org. Chem. 1975; 40: 231
    • 183a Lapworth A. J. Chem. Soc. 1903; 83: 995
    • 183b Kuebrich J, Schowen RL, Wang M, Lupes ME. J. Am. Chem. Soc. 1971; 93: 1214
    • 183c Wöhler F. Justus Liebigs Ann. Chem. 1832; 3: 249
  • 184 Ukai T, Tanaka R, Dokawa T. J. Pharm. Soc. Jpn. 1943; 63: 296
    • 185a Matsumoto T, Inoue S. J. Chem. Soc., Chem. Commun. 1983; 171
    • 185b Matsumoto T, Ohishi M, Inoue S. J. Org. Chem. 1985; 50: 603
    • 185c Matsumoto T, Yamamoto H, Inoue S. J. Am. Chem. Soc. 1984; 106: 4829
  • 186 Barik S, Biju AT. Chem. Commun. 2020; 56: 15484
  • 187 Sheehan JC, Hunneman DH. J. Am. Chem. Soc. 1966; 88: 3666
  • 188 Igau A, Grutzmacher H, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 1988; 110: 6463
  • 189 Arduengo AJ, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 363
  • 190 Enders D, Breuer K, Raabe G, Runsink J, Teles JH, Melder J.-P, Ebel K, Brode S. Angew. Chem. Int. Ed. 1995; 34: 1021
    • 191a Selg C, Kraft FB, Welcke L, Zeitler K. ChemCatChem 2019; 11: 3750
    • 191b Selg C, Neumann W, Lönnecke P, Hey-Hawkins E, Zeitler K. Chem. Eur. J. 2017; 23: 7932
  • 192 Prier CK, Arnold FH. J. Am. Chem. Soc. 2015; 137: 13992
  • 193 Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
  • 194 Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
  • 195 van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M. Biochim. Biophys. Acta 2006; 1763: 1453
  • 196 Galman JL, Steadman D, Bacon S, Morris P, Smith ME. B, Ward JM, Dalby PA, Hailes HC. Chem. Commun. 2010; 46: 7608
  • 197 González B, Vicuña R. J. Bacteriol. 1989; 171: 2401
    • 198a Evans WL, Parkinson CR. J. Am. Chem. Soc. 1913; 35: 1770
    • 198b Marshall JR, Walker J. J. Chem. Soc. 1952; 467
    • 198c Gutsche CD, Griffiths DW. J. Am. Chem. Soc. 1971; 93: 4788
    • 198d Tinapp P. Chem. Ber. 1971; 104: 2266
    • 198e Weygand F, Bestmann HJ, Ziemann H, Klieger E. Chem. Ber. 1958; 91: 1043
  • 199 Tittmann K. Bioorg. Chem. 2014; 57: 263
  • 200 Zecevic D, Germer P, Walter L, Gauchenova E, Müller M. Eur. J. Org. Chem. 2018; 2018: 6465
  • 201 Yang J, Sun S, Men Y, Zeng Y, Zhu Y, Sun Y, Ma Y. Catal. Sci. Technol. 2017; 7: 3459
  • 202 Fu P, Legako A, La S, MacMillan JB. Chem. Eur. J. 2016; 22: 3491
  • 203 Bracco P, Busch H, von Langermann J, Hanefeld U. Org. Biomol. Chem. 2016; 14: 6375
    • 204a Glieder A, Weis R, Skranc W, Poechlauer P, Dreveny I, Majer S, Wubbolts M, Schwab H, Gruber K. Angew. Chem. Int. Ed. 2003; 42: 4815
    • 204b Dadashipour M, Ishida Y, Yamamoto K, Asano Y. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 10605
  • 205 Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stürmer R, Zelinski T. Angew. Chem. Int. Ed. 2004; 43: 788
  • 206 Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Angew. Chem. Int. Ed. 2021; 60: 88
  • 207 Zhang X, Evanno L, Poupon E. Eur. J. Org. Chem. 2020; 2020: 1919
  • 208 Yurino T, Tani R, Ohkuma T. ACS Catal. 2019; 9: 4434
    • 209a Yishai O, Bouzon M, Döring V, Bar-Even A. ACS Synth. Biol. 2018; 7: 2023
    • 209b Kim S.-J, Yoon J, Im D.-K, Kim YH, Oh M.-K. Biotechnol. Biofuels 2019; 12: 207
    • 209c Yishai O, Lindner SN, La Gonzalez de Cruz J, Tenenboim H, Bar-Even A. Curr. Opin. Chem. Biol. 2016; 35: 1
    • 209d Bang J, Lee SY. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: E9271
    • 209e Crowther GJ, Kosály G, Lidstrom ME. J. Bacteriol. 2008; 190: 5057
  • 210 Hwang HW, Yoon J, Min K, Kim M.-S, Kim S.-J, Cho DH, Susila H, Na J.-G, Oh M.-K, Kim YH. Chem. Eng. J. 2020; 389: 124394
  • 211 Bar-Even A. Biochemistry 2016; 55: 3851
  • 212 Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, Bar-Even A. Nat. Chem. Biol. 2020; 16: 538
  • 213 Stairs CW, Roger AJ, Hampl V. Mol. Biol. Evol. 2011; 28: 2087
    • 214a Guo J.-D, Himo F. J. Phys. Chem. B 2004; 108: 15347
    • 214b Himo F, Eriksson LA. J. Am. Chem. Soc. 1998; 120: 11449
  • 215 Thauer RK, Kirchniawy FH, Jungermann KA. Eur. J. Biochem. 1972; 27: 282
  • 216 Zelcbuch L, Lindner SN, Zegman Y, Vainberg Slutskin I, Antonovsky N, Gleizer S, Milo R, Bar-Even A. Biochemistry 2016; 55: 2423
    • 217a Baetz AL, Allison MJ. J. Bacteriol. 1990; 172: 3537
    • 217b Sidhu H, Ogden SD, Lung H.-Y, Luttge BG, Baetz AL, Peck AB. J. Bacteriol. 1997; 179: 3378
  • 218 Berthold CL, Toyota CG, Richards NG. J, Lindqvist Y. J. Biol. Chem. 2008; 283: 6519
  • 219 Casteels M, Sniekers M, Fraccascia P, Mannaerts GP, van Veldhoven PP. Biochem. Soc. Trans. 2007; 35: 876
  • 220 Baetz AL, Allison MJ. J. Bacteriol. 1989; 171: 2605
  • 221 Lung H.-Y, Baetz AL, Peck AB. J. Bacteriol. 1994; 176: 2468
  • 222 Frey J, Schneider F, Huhn T, Spiteller D, Schink B, Schleheck D. Environ. Microbiol. Rep. 2018; 10: 283
  • 223 Gutiérrez Acosta OB, Hardt N, Schink B. Appl. Environ. Microbiol. 2013; 79: 6228
  • 224 Rohwerder T, Rohde M.-T, Jehmlich N, Purswani J. Front. Microbiol. 2020; 11: 691
  • 226 Frazão CJ. R, Walther T. Chem. Ing. Tech. 2020; 92: 1680
  • 227 James CD, Wiley S, Ragsdale SW, Hoffman BM. J. Am. Chem. Soc. 2020; 142: 15362
  • 228 Chen S.-L, Siegbahn PE. M. Inorg. Chem. 2020; 59: 15167
  • 229 Cohen SE, Can M, Wittenborn EC, Hendrickson RA, Ragsdale SW, Drennan CL. ACS Catal. 2020; 10: 9741
  • 230 Song YE, Kim C, Baek J, Im CH, Seol E, Jae J, Nygård Y, Kim JR. Sustainable Energy Fuels 2020; 4: 5952
  • 231 Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA. J. Am. Chem. Soc. 2007; 129: 10328
  • 232 Latif H, Zeidan AA, Nielsen AT, Zengler K. Curr. Opin. Biotechnol. 2014; 27: 79
  • 233 Ran C.-K, Chen X.-W, Gui Y.-Y, Liu J, Song L, Ren K, Yu D.-G. Sci. China Chem. 2020; 63: 1336
  • 234 Fuchs G. Annu. Rev. Microbiol. 2011; 65: 631
  • 235 Schwander T, Schada von Brzyskowski L, Burgener S, Cortina NS, Erb TJ. Science 2016; 354: 900
  • 236 Bernhardsgrütter I, Stoffel G, Erb TJ. Biospektrum 2020; 26: 24
  • 237 Satanowski A, Bar-Even A. EMBO Rep. 2020; 21: e50273
  • 238 Liu Z, Wang K, Chen Y, Tan T, Nielsen J. Nat. Catal. 2020; 3: 274
  • 239 Calvin M, Benson AA. Science 1948; 107: 476
    • 240a Andersson I, Backlund A. Plant Physiol. Biochem. 2008; 46: 275
    • 240b Bowes G, Ogren WL, Hageman RH. Biochem. Biophys. Res. Commun. 1971; 45: 716
  • 241 Langer J, Hamza A, Pápai I. Angew. Chem. Int. Ed. 2018; 57: 2455
  • 242 Valera Lauridsen JM, Cho SY, Bae HY, Lee J.-W. Organometallics 2020; 39: 1652
  • 243 Lietzan AD, St Maurice M. Arch. Biochem. Biophys. 2014; 544: 75
  • 244 Plasch K, Hofer G, Keller W, Hay S, Heyes DJ, Dennig A, Glueck SM, Faber K. Green Chem. 2018; 20: 1754
    • 245a Buchholz PC. F, Ferrario V, Pohl M, Gardossi L, Pleiss J. Proteins 2019; 87: 774
    • 245b Gocke D, Graf T, Brosi H, Frindi-Wosch I, Walter L, Müller M, Pohl M. J. Mol. Catal. B: Enzym. 2009; 61: 30
  • 246 Lindsey AS, Jeskey H. Chem. Rev. 1957; 57: 583
  • 247 Wuensch C, Gross J, Steinkellner G, Lyskowski A, Gruber K, Glueck SM, Faber K. RSC Adv. 2014; 4: 9673
  • 248 Plasch K, Resch V, Hitce J, Popłoński J, Faber K, Glueck SM. Adv. Synth. Catal. 2017; 359: 959
  • 249 Payer SE, Marshall SA, Bärland N, Sheng X, Reiter T, Dordic A, Steinkellner G, Wuensch C, Kaltwasser S, Fisher K, Rigby SE. J, Macheroux P, Vonck J, Gruber K, Faber K, Himo F, Leys D, Pavkov-Keller T, Glueck SM. Angew. Chem. Int. Ed. 2017; 56: 13893
  • 250 Payer SE, Faber K, Glueck SM. Adv. Synth. Catal. 2019; 361: 2402
  • 251 Marshall SA, Payne KA. P, Leys D. Arch. Biochem. Biophys. 2017; 632: 209
    • 252a Payne KA. P, White MD, Fisher K, Khara B, Bailey SS, Parker D, Rattray NJ. W, Trivedi DK, Goodacre R, Beveridge R, Barran P, Rigby SE. J, Scrutton NS, Hay S, Leys D. Nature 2015; 522: 497
    • 252b White MD, Payne KA. P, Fisher K, Marshall SA, Parker D, Rattray NJ. W, Trivedi DK, Goodacre R, Rigby SE. J, Scrutton NS, Hay S, Leys D. Nature 2015; 522: 502
  • 253 Aleku GA, Saaret A, Bradshaw-Allen RT, Derrington SR, Titchiner GR, Gostimskaya I, Gahloth D, Parker DA, Hay S, Leys D. Nat. Chem. Biol. 2020; 16: 1255
    • 254a Mall A, Sobotta J, Huber C, Tschirner C, Kowarschik S, Bačnik K, Mergelsberg M, Boll M, Hügler M, Eisenreich W, Berg IA. Science 2018; 359: 563
    • 254b Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, Mori K, Kato Y, Miyazaki M, Shimamura S, Yanagawa K, Shuto A, Ohkouchi N, Fujita N, Takaki Y, Atomi H, Takai K. Science 2018; 359: 559
  • 255 Walsh CT. Nat. Prod. Rep. 2020; 37: 100
  • 256 Stoffel GM. M, Saez DA, DeMirci H, Vögeli B, Rao Y, Zarzycki J, Yoshikuni Y, Wakatsuki S, Vöhringer-Martinez E, Erb TJ. Proc. Natl. Acad. Sci. U.S.A. 2019; 116: 13964
  • 257 Quade N, Huo L, Rachid S, Heinz DW, Müller R. Nat. Chem. Biol. 2012; 8: 117
  • 258 Hamed RB, Gomez-Castellanos JR, Henry L, Warhaut S, Claridge TD. W, Schofield CJ. Commun. Chem. 2019; 2: 7
  • 259 Miller TE, Beneyton T, Schwander T, Diehl C, Girault M, McLean R, Chotel T, Claus P, Cortina NS, Baret J.-C, Erb TJ. Science 2020; 368: 649
  • 260 Olah GA. Catal. Lett. 2013; 143: 983
  • 261 Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
  • 262 Yang Q, Guo X, Liu Y, Jiang H. Int. J. Mol. Sci. 2021; 22: 1890
  • 263 Lin C.-I, McCarty RM, Liu H.-W. Angew. Chem. Int. Ed. 2017; 56: 3446
  • 264 Feng K, Quevedo RE, Kohrt JT, Oderinde MS, Reilly U, White MC. Nature 2020; 580: 621
    • 265a Röth D, Chiang AJ, Hu W, Gugiu GB, Morra CN, Versalovic J, Kalkum M. FASEB Journal 2019; 33: 3536
    • 265b Fischer NS, Steinhaus M. J. Agric. Food. Chem. 2020; 68: 10397
  • 266 Impano S, Yang H, Shepard EM, Swimley R, Pagnier A, Broderick WE. Angew. Chem. Int. Ed. 2021; 60: 4666
  • 267 Bongs J, Hahn D, Schörken U, Sprenger GA, Kragl U, Wandrey C. Biotechnol. Lett. 1997; 19: 213
  • 268 Müller M. ChemBioEng Rev. 2014; 1: 14
    • 269a Giner J.-L, Djerassi C. Phytochemistry 1991; 30: 811
    • 269b Bisel P, Al-Momani L, Müller M. Org. Biomol. Chem. 2008; 6: 2655