Synlett 2020; 31(15): 1482-1486
DOI: 10.1055/s-0040-1707892
letter
© Georg Thieme Verlag Stuttgart · New York

Regioselective Synthesis of α-Phosphinoylnaphthols through Rhodium-Catalyzed Annulation of 1-Alkynylphosphine Oxides with Sulfoxonium Ylides

Wucheng Xie
Foshan City Engineering and Technology Research Center for Bioactive Natural Products and Functional Chemicals, School of Environment and Chemical Engineering, Foshan University, #18 Jiang-wan-yi-lu, Chancheng, Foshan, Guangdong, P. R. of China   Email: wuchengxie@fosu.edu.cn   Email: junjunshi@fosu.edu.cn
,
Binting Lin
,
Xinyi Jian
,
Qinhong Lin
,
Junjun Shi
› Author Affiliations
Funding from the Natural Science Foundation of Guangdong Province (2017A030310577, 2018A030310351) and the Foundation for Distinguished Young Talents in Higher Education of Guangdong (2017KQNCX211) is gratefully acknowledged.
Further Information

Publication History

Received: 25 April 2020

Accepted after revision: 21 May 2020

Publication Date:
23 June 2020 (online)


Abstract

α-Phosphinoylnaphthols were obtained by redox-neutral annulation­ of 1-alkynylphosphine oxides with α-carbonyl sulfoxonium ylides under rhodium(III) catalysis. This protocol shows good regio­selectivity and broad functional-group tolerance.

Supporting Information

 
  • References and Notes

    • 1a Stolar M, Baumgartner T. Chem. Asian J. 2014; 9: 1212
    • 1b Shameem MA, Orthaber A. Chem. Eur. J. 2016; 22: 10718
    • 1c Bialy L, Waldmann H. Angew. Chem. Int. Ed. 2005; 44: 3814
    • 1d Chen X, Kopecky DJ, Mihalic J, Jeffries S, Min X, Heath J, Deignan J, Lai S, Fu Z, Guimaraes C, Shen S, Li S, Johnstone S, Thibault S, Xu H, Cardozo M, Shen W, Walker N, Kayser F, Wang Z. J. Med. Chem. 2012; 55: 3837
    • 1e Montchamp J.-L. Acc. Chem. Res. 2014; 47: 77
    • 1f Gong P, Ye K, Sun J, Chen P, Xue P, Yang H, Lu R. RSC Adv. 2015; 5: 94990
    • 2a Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
    • 2b Fernández-Pérez H, Etayo P, Panossiant A, Vidal-Ferran A. Chem. Rev. 2011; 111: 2119
    • 2c Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2017; 50: 988
    • 2d John JM, Bergens SH. Angew. Chem. Int. Ed. 2011; 50: 10377 ; corrigendum: Angew. Chem. Int. Ed. 2012, 51, 2533
    • 2e Khusnutdinova JR, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12236

      For selected examples, see:
    • 3a Hayashi Y, Matano Y, Suda K, Kimura Y, Nakao Y, Imahori H. Chem. Eur. J. 2012; 18: 15972
    • 3b Lü B, Fu C, Ma S. Tetrahedron Lett. 2010; 51: 1284
    • 3c Fukazawa A, Ichihashi Y, Kosaka Y, Yamaguchi S. Chem. Asian J. 2009; 4: 1729
    • 3d Kaye S, Fox JM, Hicks FA, Buchwald SL. Adv. Synth. Catal. 2001; 343: 789
    • 3e Tomori H, Fox JM, Buchwald SL. J. Org. Chem. 2000; 65: 5334
    • 4a Berger O, Petit C, Deal EL, Montchamp J.-L. Adv. Synth. Catal. 2013; 355: 1361
    • 4b Schwan AL. Chem. Soc. Rev. 2004; 33: 218
    • 4c Korff C, Helmchen G. Chem. Commun. 2004; 530
    • 4d Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
    • 4e Kočovský P, Vyskočil S, Smrčina M. Chem. Rev. 2003; 103: 3213
    • 4f Van Allen D, Venkataraman D. J. Org. Chem. 2003; 68: 4590

      For selected reviews, see:
    • 5a Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 5b Huang H, Ji X, Wu W, Jiang H. Chem. Soc. Rev. 2015; 44: 1155
    • 5c Cernak T, Dykstra KD, Tyagarajan S, Vachalb P, Krskab SW. Chem. Soc. Rev. 2016; 45: 546
    • 5d Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 5e He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 5f Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
    • 5g Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 5h Sambiagio C, Schonbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnurch M. Chem. Soc. Rev. 2018; 47: 6603
    • 5i Yang Y, Nishiura M, Wang H, Hou Z. Coord. Chem. Rev. 2018; 376: 506
    • 5j Khan I, Ibrar A, Shehzadi SA. Coord. Chem. Rev. 2019; 380: 440
    • 6a Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 6b Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 6c Kuhl N, Schröder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 6d Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
    • 6e Shin K, Kim H, Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 6f Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 7a Hu Z, Tong X, Liu G. Youji Huaxue 2015; 35: 539
    • 7b Wang Z, Xie P, Xia Y. Chinese Chem. Lett. 2018; 29: 47
    • 8a Yu D.-G, de Azambuja F, Gensch T, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 9650
    • 8b Fukui Y, Liu P, Liu Q, He Z.-T, Wu N.-Y, Tian P, Lin G.-Q. J. Am. Chem. Soc. 2014; 136: 15607
    • 8c Wang H, Grohmann C, Nimphius C, Glorius F. J. Am. Chem. Soc. 2012; 134: 19592
    • 8d Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908 ; corrigendum: J. Am. Chem. Soc. 2012, 134, 18148
    • 8e Chuang S.-C, Gandeepan P, Cheng C.-H. Org. Lett. 2013; 15: 5750
    • 8f Zhang Z, Jiang H, Huang Y. Org. Lett. 2014; 16: 5976
    • 8g Liu G, Shen Y, Zhou Z, Lu X. Angew. Chem. Int. Ed. 2013; 52: 6033
    • 8h Zhang Q.-R, Huang J.-R, Zhang W, Dong L. Org. Lett. 2014; 16: 1684
    • 8i Li XG, Liu K, Zou G, Liu PN. Adv. Synth. Catal. 2014; 356: 1496
    • 9a Kondoh A, Yorimitsu H, Oshima K. Org. Lett. 2010; 12: 1476
    • 9b Mishra A, Deb I. Adv. Synth. Catal. 2016; 358: 2267
    • 9c Egorova AV, Viktorov NB, Starova GL, Svintsitskaya NI, Garabadziu AV, Dogadina AV. Tetrahedron Lett. 2017; 58: 2997
    • 9d Chen L, Zou Y.-X. Org. Biomol. Chem. 2018; 16: 7544
  • 10 Li B, Yang J, Xu H, Song H, Wang B. J. Org. Chem. 2015; 80: 12397
    • 11a Wang H, Wang B, Li B. J. Org. Chem. 2017; 82: 9560
    • 11b Wang H, Li S, Wang B, Li B. Org. Chem. Front. 2018; 5: 88
  • 12 Song L, Xiao J, Dong W, Peng Z, An D. Eur. J. Org. Chem. 2017; 341
    • 13a Chung M.-I, Jou S.-J, Cheng T.-H, Lin C.-N, Ko F.-N, Teng C.-M. J. Nat. Prod. 1994; 57: 313
    • 13b Meyers AI, Willemsen JJ. Chem. Commun. 1997; 1573
  • 14 Xu Y, Yang X, Zhou X, Kong L, Li X. Org. Lett. 2017; 19: 4307
    • 15a Barday M, Janot C, Halcovitch NR, Muir J, Aïssa C. Angew. Chem. Int. Ed. 2017; 56: 13117
    • 15b Xu Y, Zhou X, Zheng G, Li X. Org. Lett. 2017; 19: 5256
    • 15c Wu X, Xiong H, Sun S, Cheng J. Org. Lett. 2018; 20: 1396
    • 15d Chen G, Zhang X, Jia R, Li B, Fan X. Adv. Synth. Catal. 2018; 360: 3781
    • 15e Hu P, Zhang Y, Liu B, Li X. Org. Chem. Front. 2018; 5: 3263
    • 15f Ji S, Yan K, Li B, Wang B. Org. Lett. 2018; 20: 5981
    • 15g Xie W, Chen X, Shi J, Li J, Liu R. Org. Chem. Front. 2019; 6: 2662
    • 15h Wu C, Zhou J, He G, Li H, Yang Q, Wang R, Zhou Y, Liu H. Org. Chem. Front. 2019; 6: 1183
    • 15i Cui X.-F, Ban Z.-H, Tian W.-F, Hu F.-P, Zhou X.-Q, Ma H.-J, Zhan Z.-Z, Huang G.-S. Org. Biomol. Chem. 2019; 17: 240
  • 16 CCDC 1970775 contains the supplementary crystallographic data for compound 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 17 4-(Diphenylphosphoryl)-3-phenyl-1-naphthol (3aa); Typical Procedure A Schlenk tube equipped with a stirrer bar was charged with a mixture of diphenyl(phenylethynyl)phosphine oxide (2a, 0.10 mmol), 2-[dimethyl(oxido)-λ4-sulfanylidene]-1-phenylethanone (1a, 35.3 mg, 0.18 mmol, 1.8 equiv), [Cp*Rh(CH3CN)3](SbF6)2 (8.3 mg, 0.01mmol, 10.0 mol%), and Zn(OAc)2 (5.5 mg, 0.3 equiv). Anhyd DCE (4.0 mL) was added, and the mixture was stirred at 80 °C for 12 h under N2. The mixture was then concentrated under reduced pressure, and the residue was adsorbed onto a small amount of silica and purified by flash column chromatography [silica gel, EtOAc–CH2Cl2 (1:4)] to give a pale-yellow solid; yield: 38.6 mg (92%); mp 278–279 °C. IR (KBr): 3443, 2924, 1584, 1360, 1172, 1148, 1121, 698, 534 cm–1. 1H NMR (400 MHz, DMSO): δ = 10.48 (s, 1 H), 8.24 (d, J = 8.2 Hz, 1 H), 7.60–7.54 (m, 1 H), 7.54–7.37 (m, 11 H), 7.20–7.12 (m, 2 H), 7.04 (t, J = 7.6 Hz, 2 H), 6.99–6.89 (m, 3 H). 13C NMR (101 MHz, DMSO): δ = 152.13 (d, J = 15.2 Hz), 136.64 (d, J = 5.3 Hz), 136.04 (d, J = 8.2 Hz), 134.39, 134.07 (d, J = 13.1 Hz), 133.37, 131.72, 131.20, 131.11, 129.92, 128.91, 128.22 (d, J = 11.7 Hz), 127.02, 126.82, 126.74, 126.61, 126.35, 125.80 (d, J = 2.0 Hz), 122.04, 110.00 (d, J = 13.4 Hz). 31P NMR (162 MHz, DMSO): δ = 26.17. HRMS (ESI): m/z [M + H]+ calcd for C28H22O2P: 421.1352; found: 421.1352.