Synthesis 2020; 52(18): 2639-2649
DOI: 10.1055/s-0040-1707860
short review
© Georg Thieme Verlag Stuttgart · New York

Oxidation of Alkynes via Catalytic Metal-Vinylidenes

,
Carlos Saá
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain   Email: jesus.varela@usc.es   Email: carlos.saa@usc.es
,
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain   Email: jesus.varela@usc.es   Email: carlos.saa@usc.es
› Author Affiliations
This work has received financial support from Ministerio de Economía y Competitividad (MINECO; project CTQ2017-87939R and ORFEO-CINQA network RED2018-102387-T), the Xunta de Galicia (project ED431C 2018/04 and Centro singular de investigación de Galicia accreditation 2019-2022, ED431G 2019/03) and the European Union (European Regional Development Fund – ERDF).
Further Information

Publication History

Received: 07 April 2020

Accepted after revision: 04 May 2020

Publication Date:
15 June 2020 (online)


Abstract

Metal-vinylidenes, generated by treatment of terminal alkynes with transition metals, are very useful intermediates in modern synthetic chemistry as shown by the high number of transformations in which they are involved. When a metal-vinylidene is generated in the presence of an oxidant, its immediate oxidation to a ketene occurs. In this short review, recent synthetic applications of the oxidation of alkynes via ketene intermediates from initially formed metal-vinylidenes­ are highlighted.

1 Introduction

2 Oxidation of Metal-Vinylidenes with Internal Oxidants

3 Oxidation of Metal-Vinylidenes with External Oxidants

4 Conclusions

 
  • References

  • 1 Ervin KM, Gronert S, Barlow SE, Gilles MK, Harrison AG, Bierbaum VM, DePuy CH, Lineberger WC, Ellison GB. J. Am. Chem. Soc. 1990; 112: 5750
    • 2a Bruce MI. Chem. Rev. 1998; 98: 2797
    • 2b Bruce MI. Chem. Rev. 1991; 91: 197
    • 2c Davies SG, McNally JP, Smallridge AJ. Adv. Organomet. Chem. 1990; 30: 1
    • 2d Antonova AB, Ioganson AA. Russ. Chem. Rev. 1989; 58: 1197
    • 2e Bruce MI, Swincer AG. Adv. Organomet. Chem. 1983; 22: 59
    • 3a King RB, Saran MS. J. Chem. Soc., Chem. Commun. 1972; 1053
    • 3b Mills OS, Redhouse AD. J. Chem. Soc. A 1968; 1282
    • 3c Mills OS, Redhouse AD. Chem. Commun. 1966; 444
    • 4a Otsuka M, Tsuchida N, Ikeda Y, Lambert N, Nakamura R, Mutoh Y, Ishii Y, Takano K. Organometallics 2015; 34: 3934
    • 4b Jiménez-Tenorio M, Puerta MC, Valerga P, Ortuño MA, Ujaque G, Lledós A. Inorg. Chem. 2013; 52: 8919
    • 4c Wang Q, Wang X, Andrews L. J. Phys. Chem. A 2011; 115: 12194
    • 4d Swennenhuis BH. G, Cieslinski GB, Brothers EN, Bengali AA. J. Organomet. Chem. 2010; 695: 891
    • 4e Lynam JM. Chem. Eur. J. 2010; 16: 8238
    • 4f Cadierno V, Gamasa MP, Gimeno J. Coord. Chem. Rev. 2004; 248: 1627
    • 4g Wakatsuki Y. J. Organomet. Chem. 2004; 689: 4092
    • 4h Puerta MC, Valerga P. Coord. Chem. Rev. 1999; 193-195: 977
    • 5a Bassetti M, Cadierno V, Gimeno J, Pasquini C. Organometallics 2008; 27: 5009
    • 5b De Angelis F, Sgamellotti A, Re N. Organometallics 2002; 21: 2715
    • 5c De Angelis F, Sgamellotti A, Re N. Organometallics 2002; 21: 5944
    • 5d Tokunaga M, Suzuki T, Koga N, Fukushima T, Horiuchi A, Wakatsuki Y. J. Am. Chem. Soc. 2001; 123: 11917
    • 5e Wakatsuki Y, Koga N, Yamazaki H, Morokuma K. J. Am. Chem. Soc. 1994; 116: 8105
    • 6a Vastine BA, Hall MB. Organometallics 2008; 27: 4325
    • 6b Grotjahn DB, Zeng X, Cooksy AL, Kassel WS, DiPasquale AG, Zakharov LN, Rheingold AL. Organometallics 2007; 26: 3385
    • 6c De Angelis F, Sgamellotti A, Re N. Organometallics 2007; 26: 5285
    • 6d Grotjahn DB, Zeng X, Cooksy AL. J. Am. Chem. Soc. 2006; 128: 2798
    • 6e Pérez-Carreño E, Paoli P, Ienco A, Mealli C. Eur. J. Inorg. Chem. 1999; 1315
    • 6f Wakatsuki Y, Koga N, Werner H, Morokuma K. J. Am. Chem. Soc. 1997; 119: 360
  • 7 Oliván M, Clot E, Eisenstein O, Caulton KG. Organometallics 1998; 17: 3091
    • 8a Lass RW, Werner H. Inorg. Chim. Acta 2011; 369: 288
    • 8b Konkol M, Steinborn D. J. Organomet. Chem. 2006; 691: 2839
    • 8c Ilg K, Paneque M, Poveda ML, Rendón N, Santos LL, Carmona E, Mereiter K. Organometallics 2006; 25: 2230
    • 8d Jiménez MV, Sola E, Lahoz FJ, Oro LA. Organometallics 2005; 24: 2722
    • 8e Murakami M, Hori S. J. Am. Chem. Soc. 2003; 125: 4720
    • 8f Foerstner J, Kakoschke A, Goddard R, Rust J, Wartchow R, Butenschön H. J. Organomet. Chem. 2001; 617-618: 412
    • 8g Huang D, Streib WE, Eisenstein O, Caulton KG. Organometallics 2000; 19: 1967
    • 8h Katayama H, Ozawa F. Organometallics 1998; 17: 5190
    • 8i Werner H, Lass RW, Gevert O, Wolf J. Organometallics 1997; 16: 4077
    • 8j Katayama H, Onitsuka K, Ozawa F. Organometallics 1996; 15: 4642
    • 8k Onitsuka K, Katayama H, Sonogashira K, Ozawa F. J. Chem. Soc., Chem. Commun. 1995; 2267
    • 8l Connelly NG, Geiger WE, Lagunas C, Metz B, Rieger AL, Rieger PH, Shaw MJ. J. Am. Chem. Soc. 1995; 117: 12202
    • 8m Naka A, Okazaki S, Hayashi M, Ishikawa M. J. Organomet. Chem. 1995; 499: 35
    • 8n Werner H, Baum M, Schneider D, Windmüller B. Organometallics 1994; 13: 1089
    • 8o Sakurai H, Fujii T, Sakamoto K. Chem. Lett. 1992; 339
    • 8p Schneider D, Werner H. Angew. Chem., Int. Ed. Engl. 1991; 30: 700
    • 9a Venkatesan K, Fox T, Schmalle HW, Berke H. Eur. J. Inorg. Chem. 2005; 901
    • 9b Venkatesan K, Blacque O, Fox T, Alfonso M, Schmalle HW, Kheradmandan S, Berke H. Organometallics 2005; 24: 920
  • 10 Miller DC, Angelici RJ. Organometallics 1991; 10: 79
    • 11a Miura T, Murata H, Kiyota K, Kusama H, Iwasawa N. J. Mol. Catal. A: Chem. 2004; 213: 59
    • 11b Miura T, Iwasawa N. J. Am. Chem. Soc. 2002; 124: 518
    • 11c Löwe C, Hund H.-U, Berke H. J. Organomet. Chem. 1989; 371: 311
    • 12a Otsuka M, Tsuchida N, Ikeda Y, Kimura Y, Mutoh Y, Ishii Y, Takano K. J. Am. Chem. Soc. 2012; 134: 17746
    • 12b Mutoh Y, Kimura Y, Ikeda Y, Tsuchida N, Takano K, Ishii Y. Organometallics 2012; 31: 5150
    • 12c Mutoh Y, Imai K, Kimura Y, Ikeda Y, Ishii Y. Organometallics 2011; 30: 204
    • 12d Singh VK, Bustelo E, de los Ríos I, Macías-Arce I, Puerta MC, Valerga P, Ortuño MA, Ujaque G, Lledós A. Organometallics 2011; 30: 4014
    • 12e de los Ríos I, Bustelo E, Puerta MC, Valerga P. Organometallics 2010; 29: 1740
    • 12f Mutoh Y, Ikeda Y, Kimura Y, Ishii Y. Chem. Lett. 2009; 38: 534
    • 12g Ikeda Y, Yamaguchi T, Kanao K, Kimura K, Kamimura S, Mutoh Y, Tanabe Y, Ishii Y. J. Am. Chem. Soc. 2008; 130: 16856
    • 12h Shaw MJ, Bryant SW, Rath N. Eur. J. Inorg. Chem. 2007; 3943
    • 13a Roh SW, Choi K, Lee C. Chem. Rev. 2019; 119: 4293
    • 13b Varela JA, González-Rodríguez C, Saá C. Top. Organomet. Chem. 2014; 48: 237
    • 13c Lozano-Vila AM, Monsaert S, Bajek A, Verpoort F. Chem. Rev. 2010; 110: 4865
    • 13d Trost BM, McClory A. Chem. Asian J. 2008; 3: 164
    • 13e Varela JA, González-Rodríguez C, Rubín SG, Castedo L, Saá C. Pure Appl. Chem. 2008; 80: 1167
    • 13f Liu R.-S. Synlett 2008; 801
    • 13g Bruneau C, Dixneuf PH. Angew. Chem. Int. Ed. 2006; 45: 2176
    • 13h Varela JA, Saá C. Chem. Eur. J. 2006; 12: 6450
    • 13i Bruneau C. Top. Organomet. Chem. 2004; 11: 125
    • 13j Dragutan V, Dragutan I. Platinum Met. Rev. 2004; 48: 148
    • 13k Katayama H, Ozawa F. Coord. Chem. Rev. 2004; 248: 1703
    • 13l Bruneau C, Dixneuf PH. Acc. Chem. Res. 1999; 32: 311
    • 14a Xu Z, Chen H, Wang Z, Ying A, Zhang L. J. Am. Chem. Soc. 2016; 138: 5515
    • 14b Yeom H.-S, Shin S. Acc. Chem. Res. 2014; 47: 966
  • 15 Allen AD, Tidwell TT. Eur. J. Org. Chem. 2012; 1081
    • 16a Kandler H, Bidell W, Jaenicke M, Knickmeier M, Veghini D, Berke H. Organometallics 1998; 17: 960
    • 16b Grotjahn DB, Lo HC. Organometallics 1995; 14: 5463
  • 17 Madhushaw RJ, Lin M.-Y, Sohel SM. A, Liu R.-S. J. Am. Chem. Soc. 2004; 126: 6895
  • 18 Lin M.-Y, Madhushaw RJ, Liu R.-S. J. Org. Chem. 2004; 69: 7700
  • 19 Lin M.-Y, Maddirala SJ, Liu R.-S. Org. Lett. 2005; 7: 1745
  • 20 Pati K, Liu R.-S. Chem. Commun. 2009; 5233
  • 21 Wang Y, Zheng Z, Zhang L. Angew. Chem. Int. Ed. 2014; 53: 9572
    • 22a Kang X, Zuckerman NB, Konopelski JP, Chen S. J. Am. Chem. Soc. 2012; 134: 1412
    • 22b Ávarez P, Lastra E, Gimeno J, Bassetti M, Falvello LR. J. Am. Chem. Soc. 2003; 125: 2386
    • 23a Trost BM, Rhee YH. J. Am. Chem. Soc. 2002; 124: 2528
    • 23b Trost BM, Rhee YH. J. Am. Chem. Soc. 1999; 121: 11680
  • 24 Kim I, Lee C. Angew. Chem. Int. Ed. 2013; 52: 10023
  • 25 Zhang W.-W, Gao T.-T, Xu L.-J, Li B.-J. Org. Lett. 2018; 20: 6534
  • 26 Rong M.-G, Qin T.-Z, Liu X.-R, Wang H.-F, Zi W. Org. Lett. 2018; 20: 6289
  • 27 Zeng H, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 13862
  • 28 Chan W.-K, Ho C.-M, Wong M.-K, Che C.-M. J. Am. Chem. Soc. 2006; 128: 14796
  • 29 Álvarez-Pérez A, Esteruelas MA, Izquierdo S, Varela JA, Saá C. Org. Lett. 2019; 21: 5346
  • 30 Kim I, Roh SW, Lee DG, Lee C. Org. Lett. 2014; 16: 2482
  • 31 Li B, Wang Y, Du D.-M, Xu J. J. Org. Chem. 2007; 72: 990