Synthesis 2020; 52(18): 2679-2688
DOI: 10.1055/s-0040-1707396
paper
© Georg Thieme Verlag Stuttgart · New York

Chlorination of Conjugated Nitroalkenes with PhICl2 and SO2Cl2 for the Synthesis of α-Chloronitroalkenes

Anastasia A. Fadeeva
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation   Email: atabolin@ioc.ac.ru   Email: tabolin87@mail.ru
b   Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
,
Sema L. Ioffe
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation   Email: atabolin@ioc.ac.ru   Email: tabolin87@mail.ru
,
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation   Email: atabolin@ioc.ac.ru   Email: tabolin87@mail.ru
› Author Affiliations

This work was supported by the Russian Science Foundation (grant 19-73-00146).
Further Information

Publication History

Received: 18 March 2020

Accepted after revision: 28 April 2020

Publication Date:
14 May 2020 (online)


Abstract

Chlorination of conjugated nitroalkenes with iodobenzene dichloride or sulfuryl chloride to give target α-chloronitroalkenes in good yields is described. Details of the procedure depend on the donating ability of the nitroalkene substituents. The activity of the described chlorinating agents increases in order ‘PhICl2/Py’ < ‘SO2Cl2’ < ‘SO2Cl2/HCl’ with the former producing the best yields for highly donating substrates and the latter for non-activated groups. An autocatalytic role of hydrogen chloride and the chemoselectivity of chlorination were also demonstrated.

Supporting Information

 
  • References

    • 2a Soengas RG, Acurcio RC, Silva AM. S. Eur. J. Org. Chem. 2014; 6339
    • 2b Motornov VA, Ioffe SL, Tabolin AA. In Targets in Heterocyclic Systems, Vol. 23. Attanasi OA, Merino P, Spinelli D. Italian Chemical Society; Rome: 2019: 237-260
    • 2c Politanskaya LV, Selivanova GA, Panteleeva EV, Tretyakov EV, Platonov VE, Nikul’shin PV, Vinogradov AS, Zonov YV, Karpov VM, Mezhenkova TV, Vasilyev AV, Koldobskii AB, Shilova OS, Morozova SM, Burgart YV, Shchegolkov EV, Saloutin VI, Sokolov VB, Aksinenko AY, Nenajdenko VG, Moskalik MY, Astakhova VV, Shainyan BA, Tabolin AA, Ioffe SL, Muzalevskiy VM, Balenkova ES, Shastin AV, Tyutyunov AA, Boiko VE, Igumnov SM, Dilman AD, Adonin NY, Bardin VV, Masoud SM, Vorobyeva DV, Osipov SN, Nosova EV, Lipunova GN, Charushin VN, Prima DO, Makarov AG, Zibarev AV, Trofimov BA, Sobenina LN, Belyaeva KV, Sosnovskikh VY, Obydennov DL, Usachev SA. Russ. Chem. Rev. 2019; 88: 425 ; Usp. Khim. 2019, 88, 425
    • 3a Motornov VA, Tabolin AA, Novikov RA, Nelyubina YV, Ioffe SL, Smolyar IS, Nenajdenko VG. Eur. J. Org. Chem. 2017; 6851
    • 3b Jana S, Adhikari S, Cox MR, Roy S. Chem. Commun. 2020; 56: 1871
  • 7 Deng X, Liang JT, Mani NS. Eur. J. Org. Chem. 2014; 410
  • 8 Jasinski R, Mikulska M, Koifman O, Baranski A. Chem. Heterocycl. Compd. 2013; 49: 1188 ; In Russian: Khim. Geterotsikl. Soedin. 2013, 1275
    • 9a Raut VS, Marion J, Vanthuyne N, Roussel C, Constantieux T, Bressy X, Bonne D, Rodriguez J. J. Am. Chem. Soc. 2017; 139: 2140
    • 9b Bao X, Rodriguez J, Bonne D. Chem. Sci. 2020; 11: 403
    • 9c Becerra D, Raimondi W, Dauzonne D, Constantieux T, Bonne D, Rodriguez J. Synthesis 2017; 49: 195
    • 9d Raimondi W, Dauzonne D, Constantieux T, Bonne D, Rodriguez J. Eur. J. Org. Chem. 2012; 6119
    • 9e Dauzonne D, Royer R. Synthesis 1988; 339
    • 10a Huang K, Ma Q, Shen X, Gong L, Meggers E. Asian J. Org. Chem. 2016; 5: 1198
    • 10b Dauzonne D, Josien H, Demerseman P. Synthesis 1992; 309
  • 13 Carroll FI, Kepler JA. Can. J. Chem. 1966; 44: 2909
  • 14 Kim JN, Son JS, Lee HJ, Jung KS. Synth. Commun. 1997; 27: 1885
  • 15 Liu L, Zhang-Negrerie D, Du Y, Zhao K. Org. Lett. 2014; 16: 436
    • 16a Dauzonne D, Demerseman P. Synthesis 1990; 66
    • 16b Dauzonne D, Royer R. Synthesis 1987; 1020
  • 20 We can also note that hydrolysis of SO2Cl2 (e.g., by traces of water or alcohols, that are often used for the crystallization of aromatic nitroalkenes) should result in release of HCl, thus activating the reaction.
    • 22a Treatment of substrate 1t with PhICl2 (1.2 equiv) according to Method A resulted in a mixture of 1t and 2k in ca. 1:1 ratio (1H NMR and GC-MS). Method B (1.2 equiv of SO2Cl2) gave monochloro- and dichloro-product (2k) in 2:1 ratio.
    • 22b Treatment of substrate 1u with PhICl2 (1.2 equiv) according to Method A resulted in predominant monochlorination of the aromatic ring. 2.4 equiv (overnight reaction) gave products 4 and 5 in ca. 1:1 ratio.
  • 23 Zhao X.-F, Zhang C. Synthesis 2007; 551
  • 24 Dauzonne D, Folleas B, Martinez L, Chabot GG. Eur. J. Med. Chem. 1997; 32: 71