Synlett 2020; 31(18): 1805-1808
DOI: 10.1055/s-0040-1707300
letter

Iron-Promoted Decarboxylation of Arylacetic Acids for the Synthesis of Aromatic Nitriles with Sodium Nitrite as the Nitrogen Source

Zhenpeng Shen
a   College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. of China   Email: zzutxz@126.com   Email: renyunlai@126.com
b   School of Chemical Engineering & Pharmacy, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. of China
,
Wenbo Liu
a   College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. of China   Email: zzutxz@126.com   Email: renyunlai@126.com
,
Xinzhe Tian
a   College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. of China   Email: zzutxz@126.com   Email: renyunlai@126.com
,
Zhe Zhao
a   College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. of China   Email: zzutxz@126.com   Email: renyunlai@126.com
b   School of Chemical Engineering & Pharmacy, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. of China
,
Yun-Lai Ren
a   College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. of China   Email: zzutxz@126.com   Email: renyunlai@126.com
› Author Affiliations
The authors would like to thank the National Natural Science Foundation of China (Grant No. 21603060) for their financial support.


Abstract

A new and effective method was developed for the synthesis of aromatic nitriles from arylacetic acids by using NaNO2 as the nitrogen source and Fe(OTf)3 as the promoter at 50 °C. A series of arylacetic acids underwent this transformation to give the targeted products in yields of 51–90%. Because of the mild conditions, the reaction is compatible with a broad range of functional groups, including ester, carboxy, hydroxy, acetamido, halo, nitro, cyano, methoxy, and even highly reactive formyl groups.

Supporting Information



Publication History

Received: 02 July 2020

Accepted after revision: 31 August 2020

Article published online:
28 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhao L, Dong Y, Xia Q, Bai J, Li Y. J. Org. Chem. 2020; 85: 6471
    • 1b Xu S, Teng J, Yu J.-T, Sun S, Cheng J. Org. Lett. 2019; 21: 9919
    • 1c Wang Z, Wang X, Ura Y, Nishihara Y. Org. Lett. 2019; 21: 6779
    • 1d Liu L.-Y, Yeung K.-S, Yu J.-Q. Chem. Eur. J. 2019; 25: 2199
    • 1e Bhagat SB, Telvekar VN. Synlett 2018; 29: 874
    • 1f Gao G, Sun P, Li Y, Wang F, Zhao Z, Qin Y, Li F. ACS Catal. 2017; 7: 4927
    • 1g Li J, Liu G, Long X, Gao G, Wu J, Li F. J. Catal. 2017; 355: 53
    • 2a Hosseinian A, Ahmadi S, Monfared A, Nezhad PD. K, Vessally E. Curr. Org. Chem. 2018; 22: 1862
    • 2b Chaitanya M, Anbarasan P. Org. Biomol. Chem. 2018; 16: 7084
    • 2c Jereb M, Hribernik L. Green Chem. 2017; 19: 2286
    • 2d Ghodse SM, Takale BS, Hatvate NT, Telvekar VN. ChemistrySelect 2018; 3: 4168
    • 2e Yabe O, Mizufune H, Ikemoto T. Synlett 2009; 1291
  • 3 Li J, Xu W, Ding J, Lee K.-H. Tetrahedron Lett. 2016; 57: 1205
    • 4a Shee M, Shah SS, Singh ND. P. Chem. Commun. 2020; 56: 4240
    • 4b Niknam E, Panahi F, Khalafi-Nezhad A. Eur. J. Org. Chem. 2020; 2020: 2699
    • 4c Chen H, Sun S, Liu YA, Liao X. ACS Catal. 2020; 10: 1397
    • 4d Mills LR, Graham JM, Patel P, Rousseaux SA. L. J. Am. Chem. Soc. 2019; 141: 19257
    • 6a Olivares M, Knörr P, Albrecht M. Dalton Trans. 2020; 49: 1981
    • 6b Das HS, Das S, Dey K, Singh B, Haridasan RK, Das A, Ahmed J, Mandal SK. Chem. Commun. 2019; 55: 11868
    • 6c Lu G.-P, Li X, Zhong L, Li S, Chen F. Green Chem. 2019; 21: 5386
    • 6d Achard T, Egly J, Sigrist M, Maisse-François A, Bellemin-Laponnaz S. Chem. Eur. J. 2019; 25: 13271
    • 8a Liu M, You E, Cao W, Shi J. Asian J. Org. Chem. 2019; 8: 1850
    • 8b Chen H, Mondal A, Wedi P, van Gemmeren M. ACS Catal. 2019; 9: 1979
    • 8c Hayrapetyan D, Rit RK, Kratz M, Tschulik K, Gooßen LJ. Chem. Eur. J. 2018; 24: 11288
    • 9a Liu J, Zhang C, Zhang Z, Wen X, Dou X, Wei J, Qiu X, Song S, Jiao N. Science 2020; 367: 281
    • 9b Wang Y, Zhang H, Xie S, Sun H, Li X, Fuhr O, Fenske D. Organometallics 2020; 39: 824
    • 9c Hota PK, Maji S, Ahmed J, Rajendran NM, Mandal SK. Chem. Commun. 2020; 56: 575
  • 10 Lamani M, Prabhu KR. Angew. Chem. Int. Ed. 2010; 49: 6622
    • 11a Gu L, Jin C, Zhang H, Liu J, Li G, Yang Z. Org. Biomol. Chem. 2016; 14: 6687
    • 11b Xu B, Jiang Q, Zhao A, Jia J, Liu Q, Luo W, Guo C. Chem. Commun. 2015; 51: 11264
  • 12 Cui J, Song J, Liu Q, Liu H, Dong Y. Chem. Asian J. 2018; 13: 482
    • 13a Patil BN, Lade JJ, Karpe AS, Pownthurai B, Vadagaonkar KS, Mohanasrinivasan V, Chaskar AC. Tetrahedron Lett. 2019; 60: 891
    • 13b Hussain FH, Suria M, Namdeo A, Borah G, Dutta D, Goswami T, Paharia P. Catal. Commun. 2019; 124: 76
    • 13c Hatvate NT, Takale BS, Ghodse SM, Telvekar VN. Tetrahedron Lett. 2018; 59: 3892
    • 13d Fang J, Wang D, Deng G.-J, Gong H. Tetrahedron Lett. 2017; 58: 4503
    • 13e Wang D, Fang J, Deng G.-J, Gong H. ACS Sustainable Chem. Eng. 2017; 5: 6398
  • 14 Feng Q, Song Q. Adv. Synth. Catal. 2014; 356: 1697
  • 15 Kangani CO, Day BW, Kelley DE. Tetrahedron Lett. 2008; 49: 914
  • 16 Nitriles 2ar: General Procedure A tube of approximate volume 45 mL was charged with the appropriate arylacetic acid (0.5 mmol), NaNO2 (3 mmol), Fe(OTf)3 (1 mmol), and undried DMSO (2 mL), and the air in the tube was replaced by argon gas. The tube was sealed and the mixture was heated with magnetic stirring at 50 °C for 10 h, then cooled to r.t. The solvent was evaporated, and the residue was purified by column chromatography (silica gel). Biphenyl-4-carbonitrile (2a)11b White solid; yield: 77.1 mg (86%); m.p. 84–86°C. 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 8.4 Hz, 2 H), 7.71 (d, J = 8.4 Hz, 2 H), 7.61–7.63 (m, 2 H), 7.50–7.53 (m, 2 H), 7.44–7.48 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 145.7, 139.2, 132.6, 129.1, 128.7, 127.8, 127.3, 119.0, 110.9. Methyl 4-Cyanobenzoate (2j)5b White solid; yield: 62 mg (77%); m.p. 63–65°C. 1H NMR (400 MHz, CDCl3): δ = 8.15 (d, J = 8.1 Hz, 2 H), 7.76 (d, J = 8.1 Hz, 2 H), 3.97 (s, 3 H). C NMR (100 MHz, CDCl3): δ = 165.4, 133.9, 132.2, 130.1, 118.0, 116.4, 52.7. 1-Naphthonitrile (2p)5b White solid; yield: 52.8 mg (69%); m.p. 37–39°C. 1H NMR (400 MHz, CDCl3): δ = 8.25 (d, J = 8.3 Hz, 1 H), 8.09 (d, J = 8.3 Hz, 1 H), 7.93 (t, J = 7.6 Hz, 2 H), 7.71 (t, J = 7.0 Hz, 1 H), 7.64 (t, J = 7.2 Hz, 1 H), 7.54 (t, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 134.7, 134.2, 132.3, 129.2, 129.1, 128.4, 128.1, 127.7, 126.4, 119.3, 109.4.
    • 17a Ge J.-J, Yao C.-Z, Wang M.-M, Zheng H.-X, Kang Y.-B, Li Y.-D. Org. Lett. 2016; 18: 228
    • 17b Ahmad A, Spenser ID. Can. J. Chem. 1960; 38: 1625
    • 17c Jereb M. Curr. Org. Chem. 2013; 17: 1694
    • 18a Song Q, Feng Q, Zhou M. Org. Lett. 2013; 15: 5990
    • 18b Zorin AV, Lenkova AO, Khachaturyan AB, Zorin VV. Russ. J. Gen. Chem. 2018; 88: 1590
    • 18c Li Y.-T, Liao B.-S, Chen H.-P, Liu S.-T. Synthesis 2011; 2639