Synlett 2021; 32(07): 655-662
DOI: 10.1055/s-0040-1707297
account

Opportunities Using Boron to Direct Reactivity in the Organic Solid State

,
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA   Email: len-macgillivray@uiowa.edu
› Author Affiliations
We thank the National Science Foundation, Division of Chemistry (Grant Number CHE-1828117) and the National Science Foundation, Division of Materials Research (Grant Number (DMR-1708673) and the Consejo Nacional de Ciencia y Tecnología (CONACyT) for financial support.


Abstract

This Account describes work by our research group that highlights opportunities to utilize organoboron molecules to direct chemical reactivity in the organic solid state. Specifically, we convey a previously unexplored use of hydrogen bonding of boronic acids and boron coordination in boronic esters to achieve [2+2]-photocycloadditions in crystalline solids. Organoboron molecules act as templates or ‘shepherds’ to organize alkenes in a suitable geometry to undergo regio- and stereoselective [2+2]-photocycloadditions in quantitative yields. We also provide a selection of publications that served as an inspiration for our strategies and offer challenges and opportunities for future developments of boron in the field of materials and solid-state chemistry.

1 Introduction

1.1 Template Strategy for [2+2]-Photocycloadditions in the Solid State

2 Boronic Acids as Templates for [2+2]-Photocycloadditions in the Solid State

2.1 Supramolecular Catalysis of [2+2]-Photocycloadditions in the Solid State Using Boronic Acids

3 Boronic Esters as Templates for [2+2]-Photocycloadditions in the Solid State

3.1 Application of Photoproducts: Separation of Thiophene from Benzene through Crystallization

3.2 Crystal Reactivity of B←N-Bonded Adducts: The Case of Styryl­thiophenes

4 Conclusions and Perspectives



Publication History

Received: 18 June 2020

Accepted after revision: 26 August 2020

Article published online:
09 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356
    • 2b Wang J, Shang M, Lundberg H, Feu KS, Hecker SJ, Qin T, Blackmond DG, Baran PS. ACS Catal. 2018; 8: 9537
  • 3 Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed. John Wiley & Sons; Hoboken: 2006: 571
  • 4 Bentley KW, Proano D, Wolf C. Nat. Commun. 2016; 7: 12539
    • 5a Fujita N, Shinkai S, James TD. Chem. Asian J. 2008; 3: 1076
    • 5b Nishiyabu R, Kubo Y, James TD, Fossey JS. Chem. Commun. 2011; 47: 1124
    • 5c Bull SD, Davidson MG, van den Elsen JM. H, Fossey JS, Jenkins AT. A, Jiang Y.-B, Kubo Y, Marken F, Sakurai K, Zhao J, James TD. Acc. Chem. Res. 2013; 46: 312
  • 6 MacGillivray LR, Papaefstathiou GS, Friščić T, Hamilton TD, Bučar D.-K, Chu Q, Varshney DB, Georgiev IG. Acc. Chem. Res. 2008; 41: 280
    • 7a MacGillivray LR, Reid JL, Ripmeester JA. J. Am. Chem. Soc. 2000; 122: 7817
    • 7b MacGillivray LR. J. Org. Chem. 2008; 73: 3311
    • 8a Friščić T, MacGillivray LR. Aust. J. Chem. 2006; 59: 613
    • 8b Elacqua E, Friščić T, MacGillivray LR. Isr. J. Chem. 2012; 52: 53
  • 9 Gao X, Friščić T, MacGillivray LR. Angew. Chem. Int. Ed. 2004; 43: 232
  • 10 Hopf H. Angew. Chem. Int. Ed. 2003; 42: 2822
  • 11 Campillo-Alvarado G, Li C, Swenson DC, MacGillivray LR. Cryst. Growth Des. 2019; 19: 2511
    • 12a Quentin J, MacGillivray LR. ChemPhysChem 2020; 21: 154
    • 12b Papaefstathiou GS, Duncan AJ. E, MacGillivray LR. Chem. Commun. 2014; 50: 15960
  • 13 Sinnwell MA, Blad JN, Thomas LR, MacGillivray LR. IUCrJ 2018; 5: 491
  • 14 Hutchins KM, Sumrak JC, Swenson DC, MacGillivray LR. CrystEngComm 2014; 16: 5762
    • 15a Chu Q, Swenson DC, MacGillivray LR. Angew. Chem. Int. Ed. 2005; 44: 3569
    • 15b Kole GK, Medishetty R, Koh LL, Vittal JJ. Chem. Commun. 2013; 49: 6298
    • 15c Kole GK, Tan GK, Vittal JJ. Cryst. Growth Des. 2012; 12: 326
    • 16a Li C, Campillo-Alvarado G, Swenson DC, MacGillivray LR. Inorg. Chem. 2019; 58: 12497
    • 16b Nagarathinam M, Peedikakkal AM. P, Vittal JJ. Chem. Commun. 2008; 5277
    • 16c Mir MH, Ong JX, Kole GK, Tan GK, McGlinchey MJ, Wu Y, Vittal JJ. Chem. Commun. 2011; 47: 11633
    • 17a Campillo-Alvarado G, Didden T, Oburn S, Swenson DC, MacGillivray LR. Cryst. Growth Des. 2018; 18: 4416
    • 17b Campillo-Alvarado G, Staudt CA, Bak MJ, MacGillivray LR. CrystEngComm 2017; 19: 2983
    • 17c Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R. N. Engl. J. Med. 2003; 348: 2609
    • 18a James TD, Phillips MD, Shinkai S. Boronic Acids in Saccharide Recognition . RSC; Cambridge: 2006: 174
    • 18b James TD, Sandanayake K, Shinkai S. Angew. Chem., Int. Ed. Engl. 1996; 35: 1910
  • 19 Pedireddi V, SeethaLekshmi N. Tetrahedron Lett. 2004; 45: 1903
  • 20 Campillo-Alvarado G, Brannan AD, Swenson DC, MacGillivray LR. Org. Lett. 2018; 20: 5490
  • 21 Friščić T, Mottillo C, Titi HM. Angew. Chem. Int. Ed. 2020; 59: 1018
    • 22a Sokolov AN, Bučar DK, Baltrusaitis J, Gu SX, MacGillivray LR. Angew. Chem. Int. Ed. 2010; 49: 4273
    • 22b Oburn SM, Quentin J, MacGillivray LR. Molecules 2019; 24: 3059
    • 23a Iwasawa N, Takahagi H. J. Am. Chem. Soc. 2007; 129: 7754
    • 23b Nishimura N, Yoza K, Kobayashi K. J. Am. Chem. Soc. 2009; 132: 777
    • 23c Rowan SJ, Cantrill SJ, Cousins GR. L, Sanders JK. M, Stoddart JF. Angew. Chem. Int. Ed. 2002; 41: 898
    • 24a Luisier N, Bally K, Scopelliti R, Fadaei FT, Schenk K, Pattison P, Solari E, Severin K. Cryst. Growth Des. 2016; 16: 6600
    • 24b Campillo-Alvarado G, D’mello MM, Sinnwell MA, Höpfl H, Morales-Rojas H, MacGillivray LR. Front. Chem. 2019; 7: 695
    • 24c Cruz-Huerta J, Campillo-Alvarado G, Höpfl H, Rodríguez-Cuamatzi P, Reyes-Márquez V, Guerrero-Álvarez J, Salazar-Mendoza D, Farfán-García N. Eur. J. Inorg. Chem. 2016; 355
  • 25 Höpfl H. J. Organomet. Chem. 1999; 581: 129
  • 26 Ono T, Taema A, Goto A, Hisaeda Y. Chem. Eur. J. 2018; 24: 17487
  • 27 Ray KK, Campillo-Alvarado G, Morales-Rojas H, Höpfl H, MacGillivray LR, Tivanski AV. Cryst. Growth Des. 2020; 20: 3
  • 28 Stephens AJ, Scopelliti R, Tirani FF, Solari E, Severin K. ACS Mater. Lett. 2019; 1: 3
  • 29 Christinat N, Scopelliti R, Severin K. Chem. Commun. 2004; 1158
  • 30 Cruz-Huerta J, Salazar-Mendoza D, Hernández-Paredes J, Ahuactzi IF. H, Höpfl H. Chem. Commun. 2012; 48: 4241
  • 31 Campillo-Alvarado G, Vargas-Olvera EC, Höpfl H, Herrera-España AD, Sánchez-Guadarrama O, Morales-Rojas H, MacGillivray LR, Rodríguez-Molina B, Farfan N. Cryst. Growth Des. 2018; 18: 2726
  • 32 Campillo-Alvarado G, D’mello KP, Swenson DC, Santhana Mariappan SV, Höpfl H, Morales-Rojas H, MacGillivray LR. Angew. Chem. Int. Ed. 2019; 58: 5413 ; Angew. Chem. 2019, 131, 5467
  • 33 Fu H, Wang Y, Zhang T, Yang C, Shan H. J. Phys. Chem. C 2017; 121: 25818
  • 34 Campillo-Alvarado G, Li C, Feng Z, Hutchins KM, Swenson DC, Höpfl H, Morales-Rojas H, MacGillivray LR. Organometallics 2020; 39: 2197
    • 35a Hutchins KM, Sumrak JC, MacGillivray LR. Org. Lett. 2014; 16: 1052
    • 35b Green BS, Heller L. J. Org. Chem. 1974; 39: 196
    • 35c Dai Y, Tan J, Ye N, Yang Z. CrystEngComm 2014; 16: 636
  • 36 Li J, Gao K, Bian M, Ding H. Org. Chem. Front. 2020; 7: 136
  • 37 Claassens IE, Barbour LJ, Haynes DA. J. Am. Chem. Soc. 2019; 141: 11425
  • 38 Park I.-H, Lee E, Lee SS, Vittal JJ. Angew. Chem. Int. Ed. 2019; 58: 14860
  • 39 Mandal R, Garai A, Peli S, Datta PK, Biradha K. Chem. Eur. J. 2020; 26: 396