Synlett 2020; 31(20): 2035-2038
DOI: 10.1055/s-0040-1707263
letter

Transition-Metal-Free Synthesis of Trifluoromethylated Furans via a Bu3P-Mediated Tandem Acylation–Wittig Reaction

Maizhan Li
,
Wei Zhou
International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. of China   Email: weizhou88@jnu.edu.cn
› Author Affiliations
This work was supported by the Fundamental Research Funds for the Central Universities (21620354).


Abstract

A highly efficient nucleophilic addition–O-acylation–intramolecular Wittig reaction of β-trifluoromethyl α,β-enones is disclosed. This strategy features mild reaction conditions and provides a practical transition-metal-free method to a set of biologically significant trifluoromethylated furans in high yields with diverse functional groups.

Supporting Information



Publication History

Received: 07 July 2020

Accepted after revision: 03 August 2020

Article published online:
02 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 2b Barnes-Seeman D, Jain M, Bell L, Ferreira S, Cohen S, Chen X.-H, Amin J, Snodgrass B, Hatsis P. ACS Med. Chem. Lett. 2013; 4: 514
    • 3a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 3b Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
    • 3c Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
    • 3d Alonso C, Martinez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 3e Charpentier J, Fruh N, Togni A. Chem. Rev. 2015; 115: 650
    • 3f Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214

      For selected examples, see:
    • 4a Niedermann K, Früh N, Senn R, Czarniecki B, Verel R, Togni A. Angew. Chem. Int. Ed. 2012; 51: 6511
    • 4b Cheng Y, Yuan X, Ma J, Yu S. Chem. Eur. J. 2015; 23: 8355
    • 4c Li L, Mu X, Liu W, Wang Y, Mi Z, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5809
    • 4d Ye K.-Y, Pombar G, Fu N, Sauer GS, Keresztes I, Lin S. J. Am. Chem. Soc. 2018; 140: 2438

      For selected examples, see:
    • 5a Li X.-J, Xiong H.-Y, Hua M.-Q, Nie J, Zheng Y, Ma J.-A. Tetrahedron 2012; 53: 2117
    • 5b Mo J, Yang R, Chen X, Tiwari B, Chi YR. Org. Lett. 2013; 15: 50
    • 5c Lin J, Kang T, Liu Q, He L. Tetrahedron: Asymmetry 2014; 25: 949
    • 5d Fu P, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 5530
    • 5e Sun L.-H, Liang Z.-Q, Jia W.-Q, Ye S. Angew. Chem. Int. Ed. 2013; 52: 5803
    • 5f Chen P, Yue Z, Zhang J, Lv X, Wang L, Zhang J. Angew. Chem. Int. Ed. 2016; 55: 13316
    • 5g Chen P, Zhang J. Org. Lett. 2017; 19: 6550

      For references on the application of the active trifluoromethylated furan compounds, see:
    • 6a Chen D, Zhou Y, Huang Q, Ji J. Chin. J. Org. Chem. 1994; 14: 49
    • 6b Yamamoto H, Hiyama T, Kanie K, Kusumoto T, Morizawa Y, Shimzu M. Organofluorine Compounds: Chemistry and Application . Springer; Berlin: 2000
    • 6c Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
    • 6d Borcherding DR, Gross A, Shum PW, Willard N, Freed BS. WO2004100946, 2004
    • 6e Jeschke P. ChemBioChem 2004; 5: 570
    • 6f Sakai N, Imamura S, Miyamoto N, Hirayama T. WO2008016192, 2008
    • 6g Kirk KL. Org. Process Res. Dev. 2008; 12: 305

      For a review, see:
    • 7a Petrov VA. Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications. Wiley; Hoboken: 2009. ; and references cited therein

    • For selected examples, see:
    • 7b Sawada H, Nakayama M, Yoshida M, Yoshida T, Kamigata N. J. Fluorine Chem. 1990; 46: 423
    • 7c Naumann D, Kischkewitz J. J. Fluorine Chem. 1990; 46: 265
    • 7d Bucci R, Laguzzi G, Pompili ML, Speranza M. J. Am. Chem. Soc. 1991; 113: 4544
    • 7e Linderman RJ, Jamois EA, Tennyson SD. J. Org. Chem. 1994; 59: 957
    • 7f Pang W, Zhu S, Xin Y, Jiang H, Zhu S. Tetrahedron 2010; 66: 1261
    • 7g Zhang D, Yuan C. Eur. J. Org. Chem. 2007; 3916
    • 7h Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034

      For recently selected examples, see:
    • 8a Yang G.-J, Du W, Chen Y.-C. J. Org. Chem. 2016; 81: 10056
    • 8b Zhou W, Wang H, Tao M, Zhu C.-Z, Lin T.-Y, Zhang J. Chem. Sci. 2017; 8: 4660
    • 8c Wang H, Zhang L, Tu Y, Xiang R, Guo Y.-L, Zhang J. Angew. Chem. Int. Ed. 2018; 57: 15787
    • 8d Li Y, Wang H, Su Y, Li R, Li C, Liu L, Zhang J. Org. Lett. 2018; 20: 6444
    • 8e Ni H, Wong YL, Wu M, Han Z, Ding K, Lu Y. Org. Lett. 2020; 22: 2460
  • 9 Typical Procedure for the Bu3P-Mediated Tandem Acylation–Wittig Reaction In a 25 mL dry Schlenk tube equipped with a stirring bar, a solution of acyl chloride 2 (1.1 equiv) and Bu3P (1.1 equiv) in dry THF (1.0 mL) and a solution of β-trifluoromethyl α,β-enone 1 (0.2 mmol) in dry THF (1.0 mL) was added. Subsequently, Et3N (1.5 equiv) was added to the above reaction solution. The reaction mixture was stirred for 0.5 h at room temperature, the reaction was monitored by TLC (hexane). Thereafter, the solvent was removed by evaporation in vacuo, and the residue was purified by flash chromatography on silica gel (hexane/EtOAc = 100:0 to 40:1) to furnished the desired trifluoromethyl-functionalized multisubstituted furans 3. Analytical Data for Compound 3aa White solid. 1H NMR (500 MHz, CDCl3): δ = 7.79−7.72 (m, 4 H), 7.49−7.41 (m, 5 H), 7.34−7.32 (m, 1 H), 6.89 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 153.03, 151.90 (q, J = 5.00 Hz), 129.46, 129.31, 128.90, 128.67, 128.41, 127.15 (q, J = 1.25 Hz), 124.06, 122.91 (q, J = 266.25 Hz), 114.29 (q, J = 37.50 Hz), 105.27 (q, J = 3.75 Hz). 19F NMR (376 MHz, CDCl3): δ = –56.41 ppm. HRMS (EI): m/z calcd for C17H11F3O [M]+: 288.0757; found: 288.0753.

    • For pioneering reports on phosphine-mediated tandem O-acylation–Wittig reactions, see:
    • 10a Kao T.-T, Syu S, Jhang Y.-W, Lin W. Org. Lett. 2010; 12: 3066
    • 10b Wang D.-W, Syu S, Huang Y.-T, Chen P, Lee CJ, Chen K.-W, Chen Y.-J, Lin W. Org. Biomol. Chem. 2011; 9: 363
    • 10c Syu S, Lee Y.-T, Jang Y.-J, Lin W. Org. Lett. 2011; 13: 2970
    • 10d Wang Y, Luo Y.-C, Hu X.-Q, Xu P.-F. Org. Lett. 2011; 13: 5346
    • 10e Lee Y.-T, Jang Y.-J, Syu S, Chou S.-C, Lee C.-J, Lin W. Chem. Commun. 2012; 48: 8135
    • 10f Lee C.-J, Tsai C.-C, Hong S.-H, Chang G.-H, Yang M.-C, Möhlmann L, Lin W. Angew. Chem. Int. Ed. 2015; 54: 8502
    • 10g Lee Y.-T, Lee C.-J, Sheu C.-N, Lin B.-Y, Wang J.-H, Lin W. Org. Biomol. Chem. 2013; 11: 5156
    • 10h Chen Y.-R, Reddy GM, Hong S.-H, Wang Y.-Z, Yu J.-K, Lin W. Angew. Chem. Int. Ed. 2017; 56: 5106
    • 10i Yang S.-M, Wang C.-Y, Lin C.-K, Karanam P, Reddy GM, Tsai Y.-L, Lin W. Angew. Chem. Int. Ed. 2018; 57: 1668
    • 10j Khairnar PV, Lung T.-H, Lin Y.-J, Wu C.-Y, Koppolu SR, Edukondalu A, Karanam P, Lin W. Org. Lett. 2019; 21: 4219