Synlett 2020; 31(17): 1696-1700
DOI: 10.1055/s-0040-1707227
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 3-Iodomethyl Sultams

Sergiy L. Filimonchuk
a   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, Kyiv 02660, Ukraine
,
Kostiantyn Nazarenko
a   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, Kyiv 02660, Ukraine
,
Tetiana Shvydenko
a   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, Kyiv 02660, Ukraine
,
Kostiantyn Shvydenko
a   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, Kyiv 02660, Ukraine
,
Eduard Rusanov
a   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, Kyiv 02660, Ukraine
,
Andrei Tolmachev
b   Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64, Kyiv 01601, Ukraine
c   Enamine Ltd, Oleksandra Matrosova Str. 23, Kyiv 01103, Ukraine   Email: a.kostyuk@yahoo.com
,
a   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, Kyiv 02660, Ukraine
› Author Affiliations
Further Information

Publication History

Received: 11 June 2020

Accepted after revision: 08 July 2020

Publication Date:
05 August 2020 (online)


Abstract

A method for the synthesis of iodomethyl-substituted five-membered sultams has been developed. The sultams were synthesized by intramolecular iodoamination of alkenyl sulfamides. The method allows synthesis of N- and C-substituted sultams. NH-Sultams were prepared by acidic cleavage of the corresponding tert-butyl sultams that are readily available. Varying the length of alkenyl substituent at sulfamide it was shown that only five- and six-membered sultams could be prepared by this method. Neither four- nor seven-membered sultams were detected. The simple practical procedure and available starting materials make the variously substituted sultams readily available.

Supporting Information

 
  • References and Notes

  • 1 Inagaki M, Tsuri T, Jyoyama H, Ono T, Yamada K, Kobayashi M, Hori Y, Arimura A, Yasui K, Ohno K, Kakudo S, Koizumi K, Suzuki R, Kato M, Kawai S, Matsumoto S. J. Med. Chem. 2000; 43: 2040
  • 2 Ries UJ, Mihm G, Narr B, Hasselbach KM, Wittneben H, Entzeroth M, van Meel JC. A, Wienen W, Hauel NH. J. Med. Chem. 1993; 36: 4040
  • 3 Zhuang L, Wai JS, Embrey MW, Fisher TE, Egbertson MS, Payne LS, Guare JP. Jr, Vacca JP, Hazuda DJ, Felock PJ, Wolfe AL, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryelski LJ, Leonard YM, Lynch JJ, Michelson SR, Young SD. J. Med. Chem. 2003; 46: 453
  • 4 Cherney RJ, Mo R, Meyer DT, Hardman KD, Liu R.-Q, Covington MB, Qian M, Wasserman ZR, Christ DD, Trzaskos JM, Newton RC, Decicco CP. J. Med. Chem. 2004; 47: 2981
  • 5 Oppolzer W. Pure Appl. Chem. 1990; 62: 1241
  • 6 Rassadin VA, Grosheva DS, Tomashevskii AA, Sokolov VV. Chem. Heterocycl. Compd. 2013; 49: 39
  • 7 Lee J, Zhong Y.-L, Reamer RA, Askin D. Org. Lett. 2003; 5: 4175
  • 8 Cooper GF. Synthesis 1991; 859
  • 9 Shewalkar MP, Rao R, Reddy VB, Shinde DB. Lett. Org. Chem. 2013; 10: 518
  • 10 Wagner BJ, Doi JT, Musker WK. J. Org. Chem. 1990; 55: 4156
  • 11 Rassadin VA, Tomashevskii AA, Sokolov VV, Potekhin AA. Chem. Heterocycl. Compd. 2008; 44: 474
  • 12 Rassadin VA, Tomashevskiy AA, Sokolov VV, Ringe A, Magull J, de Meijere A. Eur. J. Org. Chem. 2009; 2635
  • 13 Zhang W, Ai J, Shi D, Peng X, Ji Y, Liu J, Geng M, Li Y. Eur. J. Med. Chem. 2014; 80: 254
  • 14 Jiménez-Hopkins M, Hanson PR. Org. Lett. 2008; 10: 2223
  • 15 Hanessian S, Sailes H, Therrien E. Tetrahedron 2003; 59: 7047
  • 16 Hanson PR, Probst DA, Robinson RE, Yau M. Tetrahedron Lett. 1999; 40: 4761
  • 17 Brouwer AJ, Liskamp RM. J. J. Org. Chem. 2004; 69: 3662
  • 18 Karsch S, Freitag D, Schwab P, Metz P. Synthesis 2004; 1696
  • 19 Plietker B, Seng D, Fröhlich R, Metz P. Tetrahedron 2000; 56: 873
  • 20 Dibchak D, Shcherbacova V, Denisenko AV, Mykhailiuk PK. Org. Lett. 2019; 21: 8909
  • 21 Merten S, Fröhlich R, Kataeva O, Metz P. Adv. Synth. Catal. 2005; 347: 754
  • 22 Luisi G, Pinnen F. Arch. Pharm. 1993; 326: 139
  • 23 Clarisse D, Pelotier B, Fache F. Chem. Eur. J. 2013; 19: 857
  • 24 Chemler SR, Bovino MT. ACS Catal. 2013; 3: 1076
  • 25 Li G, Kotti SR. S. S, Timmons C. Eur. J. Org. Chem. 2007; 2745
  • 26 Drews J. Science 2000; 287: 1960
  • 27 Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Curr. Med. Chem. 2003; 10: 925
  • 28 Jones AD, Knight DW. Chem. Commun. 1996; 915
  • 29 Jones AD, Knight DW, Hibbs DE. J. Chem. Soc., Perkin Trans. 1 2001; 1182
  • 30 Tamaru Y, Kawamura S, Tanaka K, Yoshida Z. Tetrahedron Lett. 1984; 25: 1063
  • 31 Mizar P, Burrelli A, Günther E, Söftje M, Farooq U, Wirth T. Chem. Eur. J. 2014; 20: 13113
  • 32 Wang H, Frings M, Bolm C. Org. Lett. 2016; 18: 2431
  • 33 Liu G.-Q, Li Y.-M. J. Org. Chem. 2014; 79: 10094
  • 34 Kitamura T, Miyake A, Muta K, Oyamada J. J. Org. Chem. 2017; 82: 11721
  • 35 Marcotullio MC, Campagna V, Sternativo S, Costantino F, Curini M. Synthesis 2006; 2760
  • 36 Moriyama K, Izumisawa Y, Togo H. J. Org. Chem. 2011; 76: 7249
  • 37 Minakata S, Morino Y, Oderaotoshi Y, Komatsu M. Org. Lett. 2006; 8: 3335
  • 38 Minakata S, Kano D, Oderaotoshi Y, Komatsu M. Org. Lett. 2002; 4: 2097
  • 39 Morino Y, Hidaka I, Oderaotoshi Y, Komatsu M, Minakata S. Tetrahedron 2006; 62: 12247
  • 40 Bovino MT, Chemler SR. Angew. Chem. Int. Ed. 2012; 51: 3923
  • 41 Thakur VV, Talluri SK, Sudalai A. Org. Lett. 2003; 5: 861
  • 42 Chemler SR, Fuller PH. Chem. Soc. Rev. 2007; 36: 1153
  • 43 Liang J.-L, Yuan S.-X, Chan PW. H, Che C.-M. Org. Lett. 2002; 4: 4507
  • 44 Dauban P, Dodd RH. Org. Lett. 2000; 2: 2327
  • 45 Yin G, Wu T, Liu G. Chem. Eur. J. 2012; 18: 451
  • 46 General Procedure for the Synthesis of Iodomethyl Sultams To a solution of the corresponding sulfamide (5 mmol, 1 equiv) in acetonitrile (20 mL) was added sodium bicarbonate (7.5 mmol, 1.5 equiv), then iodine (15 mmol, 3 equiv), and the reaction mixture was stirred overnight. To the reaction mixture, water (20 mL) was added with stirring. Sodium metabisulfite was added portionwise to the stirring reaction mixture until the disappearance of the brown color of iodine. The reaction mixture was extracted with chloroform (3 × 30 mL). The combined chloroform extracts were dried over sodium sulfate, filtered, and evaporated to dryness. The crude sultam was purified by flash chromatography (hexane/dichloromethane 9:1 to dichloromethane). General Procedure D: Cleavage of the tert-Butyl Group in Sultams 2d,f,h To a solution of the corresponding sultam (2 mmol) in dichloromethane (20 mL) was added trifluoroacetic acid (2 mL). The reaction mixture was stirred at 35 °C for 4 h, and the reaction mixture was evaporated to dryness. The residue was purified by column chromatography (dichlormethane/tert-butyl methyl ether 9:1 to tert-butyl methyl ether).
  • 47 Analytical Data for 2-(tert-Butyl)-3-(iodomethyl)isothiazolidine 1,1-Dioxide (2d) Procedure C was applied, starting from 1d. Yield 1.53 g, 96%; yellowish crystals; mp 121–123 °C. 1H NMR (500 MHz, CDCl3): δ = 3.86–3.73 (m, 1 H), 3.33–3.13 (m, 3 H), 3.12–3.02 (m, 1 H), 2.48–2.42 (m, 2 H) 1.42 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 57.9, 57.8, 47.1, 28.6, 24.8, 9.3. GC-MS (EI): m/z (%) = 317 (1), 302 (100), 176 (59), 134 (50), 120 (62). Anal. Calcd: C, 30.29; H, 5.08; N, 4.42. Found: C, 30.05; H, 5.37; N, 4.31.
  • 48 Analytical Data for 3-(Iodomethyl)isothiazolidine 1,1-Dioxide (2a) Procedure D was applied, starting from sultam 2d. Yield 1.16 g, 89%; yellow powder; mp 74–76 °C. 1H NMR (500 MHz, CDCl3): δ = 4.89 (br s, 1 H, NH), 3.85–3.73 (m, 1 H), 3.38–3.22 (m, 3 H), 3.19–3.09 (m, 1 H), 2.74–2.58 (m, 1 H), 2.22–2.10 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 54.8, 48.6, 29.4, 9.2. MS: m/z (%) = 262 [M + H]+ (100). Anal. Calcd: C, 18.40; H, 3.09; N, 5.36. Found: C, 18.63; H, 2.87; N, 5.58.