Synlett 2020; 31(14): 1384-1388
DOI: 10.1055/s-0040-1707163
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of a Water-Soluble, Soft N-Donor BTzBP Ligand Containing Only CHON

Samantha A. Labb
,
Conner J. Masteran
,
Savannah G. Albright
,
Bakr Ali
,
Hayley A. Chapman
,
Yijie Cheng
,
Rachel M. Cusic
,
Nathan B. Hartlove
,
Alissa N. Marr
,
Miranda Timmons
,
Salisbury University, 1101 Camden Ave., Salisbury, MD 21801, USA   Email: sjfriese@salisbury.edu
› Author Affiliations
We gratefully acknowledge the National Science Foundation (MRI No. 1827905) for financial support to purchase a 400 MHz NMR spectrometer console and autosampler, and additional research support by the National Science Foundation: Bridges for SUCCESS (No. 0969428) and Salisbury University.
Further Information

Publication History

Received: 26 May 2020

Accepted after revision: 31 May 2020

Publication Date:
24 June 2020 (online)


Abstract

A hydrophilic ligand that contains only C, H, O, and N substituents and uses a 6,6′-bis(1H-1,2,3-triazol-4-yl)-2,2′-bipyridine (BTzBP) structural core has been synthesized. The effect of adding water-soluble groups onto extractant ligands has been extensively studied to facilitate the efficient partitioning of 4f and transuranic 5f elements for the treatment of spent nuclear fuel. Soft, N-donor ligands exhibit greater binding affinities for the trivalent actinides over the trivalent lanthanides, making BTzBP ligands an ideal candidate in the search for extractants to be used on an industrial scale. To date, hydrophobic BTzBPs have been shown to exhibit physical and chemical properties that might be conducive to nuclear waste processing conditions. However, hydrophilic BTzBPs have yet to be reported. Herein, we show the synthesis of a hydrophilic BTzBP ligand featuring cationic water solubilizing groups attached to the bipyridal rings.

Supporting Information

 
  • References and Notes

    • 1a Potential Benefits and Impacts of Advanced Nuclear Fuel Cycles with Actinide Partitioning and Transmutation. NEA No. 6894; OECD, Nuclear Energy Agency (NEA): Paris, 2011
    • 1b Nash KL, Nilsson M. In Reprocessing and Recycling of Spent Nuclear, 1 . Taylor R. Woodhead Publishing; Oxford: 2015: 3
    • 1c Poinssot Ch, Boullis B, Bourg S. In Reprocessing and Recycling of Spent Nuclear Fuel, 2. . Taylor R. Woodhead Publishing; Oxford: 2015: 27
    • 1d Salvatores M, Palmiotti G. Prog. Part. Nucl. Phys. 2011; 66: 144
  • 2 Glatz JP, Soucek P, Malmbeck R. In Reprocessing and Recycling of Spent Nuclear Fuel, 3 . Taylor R. Woodhead Publishing; Oxford: 2015: 49
    • 3a Cotton S. In Lanthanide and Actinide Chemistry. . J. Wiley & Sons Ltd; Chichester: 2006
    • 3b Katz JJ, Morss LR, Edelstein NM, Fuger J. In The Chemistry of the Actinide and Transactinide Elements, Vol. 1. Katz JJ, Morss LR, Edelstein NM, Fuger J. Springer; Dordrecht: 2006: 1-17
    • 4a Choppin GR. J. Alloys Compd. 2002; 344: 55
    • 4b Jarvinen GD, Barrans RE, Schroeder NC, Wade KL, Jones MM, Smith BF, Mills JL, Howard G, Freiser H, Muralidharan S. In Separation of f Elements . Nash KL, Choppin GR. Plenum Press; New York: 1995
    • 5a Leoncini A, Huskens J, Verboom W. Chem. Soc. Rev. 2017; 46: 7229
    • 5b Hudson MJ, Harwood LM, Laventine DM, Lewis FW. Inorg. Chem. 2013; 52 (07) 3414
    • 5c Panak PJ, Geist A. Chem. Rev. 2013; 113: 1199
    • 6a Hudson MJ. Czech. J. Phys. 2003; 53: A305
    • 6b Madic C, Hudson MJ. In High-level Liquid Waste Partitioning by Means of Completely Incinerable Extractants. EUR 18038, European Commission; Luxembourg: 1998
    • 7a Zaytsev AV, Bulmer B, Kozhevnikov VN, Sims M, Modolo G, Wilden A, Waddell PG, Geist A, Panak PJ, Wessling P, Lewis FW. Chem. Eur. J. 2020; 26: 428
    • 7b Distler P, Stamberg K, John J, Harwood LM, Lewis FW. J. Chem. Thermodyn. 2020; 141: 105955
    • 7c Afsar A, Babra JS, Distler P, Harwood LM, Hopkins I, John J, Westwood J, Selfe ZY. Heterocycles 2020; 101: 209
    • 7d Williams J, Dehaudt J, Bryantsev VS, Luo H, Abney CW, Dai S. Chem. Commun. 2017; 53: 2744
    • 8a Foreman MR. S. J, Hudson MJ, Geist A, Madic C, Weigl M. Solvent Extr. Ion Exch. 2005; 23 (05) 645
    • 8b Aneheim E, Gruner B, Ekberg C, Foreman MR. S. J, Hajkova Z, Lofstrom-Engdahl E, Drew MG. B, Hudson MJ. Polyhedron 2013; 50: 154
    • 8c Lofstrom-Engdahl E, Aneheim E, Ekberg C, Skarnemark G. J. Radioanal. Nucl. Chem. 2013; 296: 733
    • 9a Drew MG. B, Foreman MR. S. J, Hill C, Hudson MJ, Madic C. Inorg. Chem. Commun. 2005; 8: 239
    • 9b Nilsson M, Ekberg C, Foreman MR. S, Hudson M, Liljenzin JO, Modolo G, Skarnemark G. Solvent Extr. Ion Exch. 2006; 24: 823
    • 9c Lewis FW, Harwood LM, Hudson MJ, Drew MG. B, Desreux JF, Vidick G, Bouslimani N, Modolo G, Wilden A, Sypula M, Vu T.-H, Simonin J.-P. J. Am. Chem. Soc. 2011; 133: 13093
    • 10a Muller JM, Galley SS, Albrecht-Schmitt TE, Nash KL. Inorg. Chem. 2016; 55 (21) 11454
    • 10b Muller JM, Nash KL. Solvent Extr. Ion Exch. 2016; 34: 322
    • 11a Modolo G, Wilden A, Geist A, Magnusson D, Malmbeck R. Radiochim. Acta 2012; 100: 715
    • 11b Modolo G, Wilden A, Kaufholz P, Bosbach D, Geist A. Prog. Nucl. Energy 2014; 72: 107
    • 11c Modolo G, Geist A, Miguirditchian M. In Reprocessing and Recycling of Spent Nuclear Fuel, 10 . Taylor R. Woodhead Publishing; Oxford: 2015: 245-287
    • 12a Peterman D, Geist A, Modolo G, Galán MH, Olson L, McDowell R. Ind. Eng. Chem. Res. 2016; 55: 10427
    • 12b Wilden A, Modolo G, Kaufholz P, Sadowski F, Lange S, Sypula M, Magnusson D, Müllich U, Geist A, Bosback D. Solvent Extraction and Ion Exchange 2014; 33: 91
    • 12c Lewis FW, Harwood LM, Hudson MJ, Geist A, Kozhevnikov VN, Distler P, John J. Chem. Sci. 2015; 6: 4812
    • 13a Mossini E, Macerata E, Brambilla L, Panzeri W, Mele A, Castiglioni C, Mariani M. J. Radioanal. Nucl. Chem. 2019; 322: 1663
    • 13b Wagner C, Mossini R, Macerata E, Mariani M, Arduini AC, Geist A, Panak PJ. Inorg. Chem. 2017; 56: 2135
    • 13c Macerata E, Mossini E, Scaravaggi S, Mariani M, Mele A, Panzeri W, Boubals N, Berthon L, Charbonnel M.-C, Sansone F, Arduini A, Casnati A. J. Am. Chem. Soc. 2016; 138: 7232
  • 14 Edwards AC, Mocilac P, Geist A, Harwood LM, Sharrad CA, Burton NA, Whitehead RC, Denecke MA. Chem. Commun. 2017; 53: 5001
  • 15 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41 (14) 2596
    • 16a Bräse S, Gil C, Zimmerman V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 16b Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 17 Velázquez HD, Garcia YR, Vandichel M, Madder A, Verpoort F. Org. Biomol. Chem. 2014; 12: 9350
  • 18 Wang X.-j, Zhang L, Krishnamurthy D, Senanayake CH, Wipf P. Org. Lett. 2010; 12: 4632
  • 19 Ohta S, Kawasaki I, Uemura T, Yamashita M, Yoshioka T, Yamaguchi S. Chem. Pharm. Bull. 1997; 45: 1140
  • 20 Berthold D, Breit B. Org. Lett. 2018; 20: 598
  • 21 Characterization Data for 8b: 1H NMR (D2O 400 MHz): δ = 2.63 (s, 6 H), 3.20 (s, 18 H), 4.00 (s, 6 H), 4.69 (s, 4 H), 8.01 (s, 2 H), 8.18 (s, 2 H). 13C NMR (100 MHz, D2O): δ = 9.2, 34.5, 52.9, 67.6, 122.8, 124.6, 134.8, 138.1, 141.8, 151.4, 155.2. IR (ATR): 669.1, 750.1, 872.9, 902.2, 934.0, 977.3, 1067.3, 1113.4, 1162.8, 1277.9, 1326.0, 1480.8, 1560.3, 1606.1, 2910, 2955, 3035, 3373 cm–1. HRMS (ESI): m/z [M]+2 calcd for C26H38N10: 245.1635; found: 245.1630.