Synlett 2020; 31(14): 1418-1422
DOI: 10.1055/s-0040-1707110
letter
© Georg Thieme Verlag Stuttgart · New York

Access to β-Hydroxyl Esters via Copper-Catalyzed Reformatsky Reaction of Ketones and Aldehydes

Lu Ouyang
,
Jian Hua Liao
,
Yan Ping Xia
,
Ren Shi Luo
This project was funded by the National Natural Science Foundation of China (21962004, 21961002, 21562004), Jiangxi provincial department of science and technology (20192BAB203004), the emergency research project for Gannan Medical University (YJ202027), and the Fundamental Research Funds for Gannan Medical University (QD201810) for financial support.
Further Information

Publication History

Received: 07 April 2020

Accepted after revision: 09 April 2020

Publication Date:
07 May 2020 (online)


Abstract

An efficient and simple Cu-catalyzed Reformatsky reaction of ketones and aldehydes has been accomplished with ethyl iodoacetate. Excellent yields of β-hydroxyl esters were achieved with a range of ketones and aldehydes, which varied from aromatic to aliphatic, unsaturated to saturated ketones and aldehydes. This practical and convenient transformation was conducted with inexpensive, readily available, and commercial starting materials under mild reaction conditions.

Supporting Information

 
  • References and Notes

    • 1a Boudier A, Bromm LO, Lotz M, Knochel P. Angew. Chem. Int. Ed. 2000; 39: 4414
    • 1b Kim JH, Ko YO, Bouffard J, Lee S. Chem. Soc. Rev. 2015; 44: 2489
    • 1c Shen Z.-L, Wang S.-Y, Chok Y.-K, Xu Y.-H, Loh T.-P. Chem. Rev. 2013; 113: 271
  • 2 Reformatsky S. Ber. Dtsch. Chem. Ges. 1887; 20: 1210
    • 3a Kobayashi T, Tanaka K, Ishida M, Yamakita N, Abe H, Ito H. Chem. Commun. 2018; 54: 10316
    • 3b Cheng-Sanchez I, Carrillo P, Sánchez-Ruiz A, Martínez-Poveda B, Quesada AR, Medina MA, López-Romero JM, Sarabia F. J. Org. Chem. 2018; 83: 5365
    • 3c Kang T, Jo D, Han S. J. Org. Chem. 2017; 82: 9335
    • 4a Nakamukai S, Takada K, Furihata K, Ise Y, Okada S, Morii Y, Yamawaki N, Takatani T, Arakawa O, Gustafson KR, Matsunaga S, Stellatolide H. Tetrahedron Lett. 2018; 59: 2532
    • 4b Bae M, Kim J, Park HJ, Lee SK, Shin J, Oh D.-C. J. Nat. Prod. 2016; 79: 332
    • 4c Mandavid H, Rodrigues AM. S, Espindola LS, Eparvier V, Stien D. J. Nat. Prod. 2015; 78: 1735
    • 5a Rieke RD, Uhm SJ. Synthesis 1975; 452
    • 5b Santaniello E, Manzocchi A. Synthesis 1977; 698
    • 5c Huck L, Berton M, de la Hoz A, Díaz-Ortizb A, Alcázar J. Green Chem. 2017; 19: 1420
    • 5d Peng Y.-Y, Liu P, Liu Z.-J, Liu J.-T, Mao H.-F, Yao Y.-L. Tetrahedron 2018; 74: 3074
    • 5e Fernández-Sánchez L, Fernández-Salas JA, Maestro MC, Ruano JL. G. J. Org. Chem. 2018; 83: 12903
    • 6a Fürstner A, Hupperts A. J. Am. Chem. Soc. 1995; 117: 4468
    • 6b Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 12349
    • 6c GansHuer A, Bluhm H, Pierobon M. J. Am. Chem. Soc. 1998; 120: 12849
    • 6d Xia G, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 2554
    • 6e Durandetti M, Perichon J. Synthesis 2006; 1542
    • 6f Liu X.-Y, Li X.-R, Zhang C, Chu X.-Q, Rao W, Loh T.-P, Shen Z.-L. Org. Lett. 2019; 21: 5873
    • 6g Cao Q, Stark RT, Fallis IA, Browne DL. ChemSusChem 2019; 12: 2554
    • 8a Kanai K, Wakabayashi H, Honda T. Org. Lett. 2000; 2: 2549
    • 8b Sato K, Tarui A, Matsuda S, Omote M, Ondo A, Kumadaki I. Tetrahedron Lett. 2005; 46: 7679
  • 9 Cozzi PG. Angew. Chem. Int. Ed. 2006; 45: 2951
    • 10a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 10b Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
    • 11a Sgreccia L, Bandini M, Morganti S, Quintavalla A, Umani-Ronchi A, Cozzi PG. J. Organomet. Chem. 2007; 692: 3191
    • 11b Kakiya H, Nishimae S, Shinokubo H, Oshima K. Tetrahedron 2001; 57: 8807
    • 12a Tang X, Wu W, Zeng W, Jiang H. Acc. Chem. Res. 2018; 51: 1092
    • 12b Huang H, Ji X, Wu W, Jiang H. Chem. Soc. Rev. 2015; 44: 1155
    • 13a Cao C.-R, Jiang M, Liu J.-T. Eur. J. Org. Chem. 2015; 1144
    • 13b Yao H, Cao C.-R, Jiang M, Liu J.-T. J. Fluorine Chem. 2013; 156: 45
    • 14a Durandetti M, Périchon J. Synthesis 2009; 1542
    • 14b Chattopadhyay A, Dubey AK. J. Org. Chem. 2007; 72: 9357
    • 14c Hojo M, Harada H, Ito H, Hosomi A. J. Am. Chem. Soc. 1997; 119: 5459
    • 14d Suh S, Rieke RD. Tetrahedron Lett. 2004; 45: 1807
    • 14e Liu X.-Y, Li X.-R, Zhang R, Chu X.-Q, Rao W, Loh T.-P, Shen Z.-L. Org. Lett. 2019; 21: 5873
  • 15 Preparation of 3 and 5: To a 25 mL dried Schlenk tube was added the mixture of carbonyl compounds (0.5 mmol), Mn powder (3 equiv), CuI (10 mol%), ethyl iodoacetate (0.75 mmol), and CF3COOH (25 mol%) in MeCN (2.0 mL) successively. The mixture was stirred at room temperature for 12 h under N2 atmosphere. When the reaction was complete, the mixture was diluted with H2O (15 mL), neutralized with NH4Cl, and extracted with EtOAc (3 × 10 mL). The organic extract was washed with brine (3 × 10 mL) and dried over anhydrous MgSO4. After removal of the EtOAc under vacuum, the crude product was purified by column chromatography on silica gel with hexanes or petroleum ether/ethyl acetate (5:1 to 20:1) to give the desired products. Compound 3a: Yield: 94% (97.8 mg); colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.46 (dd, J = 5.2, 3.4 Hz, 2 H), 7.33 (dd, J = 10.4, 4.9 Hz, 2 H), 7.26–7.20 (m, 1 H), 4.41 (s, 1 H), 4.05 (q, J = 7.1 Hz, 2 H), 2.97 (d, J = 15.8 Hz, 1 H), 2.79 (d, J = 15.8 Hz, 1 H), 1.55 (s, 3 H), 1.12 (t, J = 7.1 Hz, 3 H).13C NMR (100 MHz, CDCl3): δ = 172.6, 146.8, 128.1, 126.7, 124.4, 72.6, 60.6, 46.4, 30.6, 13.9. The overall spectroscopic data are in agreement with assigned structures and are consistent with reported data.6f