Synthesis 2021; 53(11): 1962-1970
DOI: 10.1055/s-0040-1706621
paper

A Magnetically Recyclable Palladium-Catalyzed Formylation of Aryl Iodides with Formic Acid as CO Source: A Practical Access to Aromatic Aldehydes

Shengyong You
a   Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
b   Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330029, P. R. of China
,
Rongli Zhang
a   Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Mingzhong Cai
a   Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (No. 21462021), the Natural Science Foundation of Jiangxi Province of China­ (No. 20161BAB203086) and Key Laboratory of Functional Small Organic Molecule, Ministry of Education (No. KLFS-KF-201704) for financial support.


Abstract

A magnetically recyclable palladium-catalyzed formylation of aryl iodides under CO gas-free conditions has been developed by using a bidentate phosphine ligand-modified magnetic nanoparticles-anchored­ palladium(II) complex [2P-Fe3O4@SiO2-Pd(OAc)2] as catalyst, yielding a wide variety of aromatic aldehydes in moderate to excellent yields. Here, formic acid was employed as both the CO source and the hydrogen donor with iodine and PPh3 as the activators. This immobilized palladium catalyst can be obtained via a simple preparative procedure and can be facilely recovered simply by using an external magnetic field, and reused at least 9 times without any apparent loss of catalytic activity.

Supporting Information



Publication History

Received: 03 October 2020

Accepted after revision: 10 November 2020

Article published online:
13 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Vilsmeier A, Haack A. Bull. Soc. Chim. France 1962; 1989
    • 2b Crawford LP, Richardson SK. Gen. Synth. Methods 1994; 16: 37
    • 2c Aldabbagh F. In Comprehensive Organic Functional Group Transformations II, Vol. 3, Part 1, Chap. 3. Jones K. Elsevier; Amsterdam: 2005: 99
    • 2d Fetter J, Bertha F, Poszavacz L, Simig G. J. Heterocycl. Chem. 2005; 42: 137
    • 2e Singh AS, Bhanage BM, Nagarkar JM. Tetrahedron Lett. 2011; 52: 2383
    • 3a Amakasu T, Sato K. Bull. Chem. Soc. Jpn. 1967; 40: 1428
    • 3b Peters JA, Van Bekkum H. Recl. Trav. Chim. Pays-Bas 1981; 100: 21
    • 3c Osman MA. Helv. Chim. Acta 1982; 65: 2448
    • 4a Xi H, Gibb LD, Gibb BC. J. Org. Chem. 1999; 64: 9286
    • 4b Mizuno T, Takeuchi M, Shinkai S. Tetrahedron 1999; 55: 9455
    • 4c Albrecht M, Rodriguez G, Schoenmarker J, Van Koten G. Org. Lett. 2000; 2: 3461
    • 4d Hoye TR, Humpal PE, Moon B. J. Am. Chem. Soc. 2000; 122: 4982
    • 5a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
    • 5b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 5c Schoenberg A, Heck RF. J. Am. Chem. Soc. 1974; 96: 7761
    • 6a Cacchi S, Fabrizi G, Goggiamani A. Org. Lett. 2003; 5: 4269
    • 6b Sergeev AG, Spannenberg A, Beller M. J. Am. Chem. Soc. 2008; 130: 15549
    • 6c Neumann H, Kadyrov R, Wu X.-F, Beller M. Chem. Asian J. 2012; 7: 2213
    • 6d Klaus S, Neumann H, Zapf A, Strbing D, Huebner S, Almena J, Riermeier T, Grob P, Sarich M, Krahnert W.-R, Rossen K, Beller M. Angew. Chem. Int. Ed. 2006; 45: 154
    • 6e Han W, Liu B, Chen J, Zhou Q. Synlett 2017; 28: 835
    • 6f Ashfield L, Barnard CF. J. Org. Process Res. Dev. 2007; 11: 39
    • 6g Baillargeon VP, Stille JK. J. Am. Chem. Soc. 1986; 108: 452
    • 7a Wu XF, Neumann H. ChemCatChem 2012; 4: 447
    • 7b Wu XF, Neumann H, Beller M. ChemSusChem 2013; 6: 229
    • 7c Wu XF, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 7d Wu XF, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 8a Ueda T, Konishi H, Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
    • 8b Ueda T, Konishi H, Manabe K. Org. Lett. 2013; 15: 5370
  • 9 Natte K, Dumrath A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2014; 53: 10090
  • 10 Korsager S, Taaning RH, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2013; 78: 6112
  • 11 Cacchi S, Fabrizi G, Goggiamani A. J. Comb. Chem. 2004; 6: 692
    • 12a Qi X, Li C.-L, Wu X.-F. Chem. Eur. J. 2016; 22: 5835
    • 12b Wu F.-P, Peng J.-B, Meng L.-S, Qi X, Wu X.-F. ChemCatChem 2017; 9: 3121
    • 12c Sun G, Lv X, Zhang Y, Lei M, Hu L. Org. Lett. 2017; 19: 4235
    • 12d Ying J, Fu L.-Y, Zhou C, Qi X, Peng J.-B, Wu X.-F. Eur. J. Org. Chem. 2018; 2780
    • 12e Dey TK, Basu P, Riyajuddin S, Ghosh A, Ghosh K, Islam S. New J. Chem. 2019; 43: 9802
    • 12f Sadhasivam V, Balasaravanan R, Siva A. Appl. Organomet. Chem. 2019; 33: e4994
  • 13 Iranpoor N, Firouzabadi H, Etemadi-Davan ED, Rostami A, Moghadam KR. Appl. Organomet. Chem. 2015; 29: 719
    • 14a Yu B, Zhao YF, Zhang HY, Xu JL, Hao LD, Gao X, Liu ZM. Chem. Commun. 2014; 50: 2330
    • 14b Yu B, Yang ZZ, Zhao YF, Hao LD, Zhang HY, Gao X, Han BX, Liu ZM. Chem. Eur. J. 2016; 22: 1097
    • 14c Kumar S, Verma S, Jain SL. Tetrahedron Lett. 2015; 56: 2430
  • 15 Qi XX, Li CL, Wu XF. Chem. Eur. J. 2016; 22: 5835
  • 16 Jiang X, Wang J.-M, Zhang Y, Chen Z, Zhu Y.-M, Ji S.-J. Org. Lett. 2014; 16: 3492
    • 18a Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J.-M. Chem. Rev. 2011; 111: 3036
    • 18b Nasi Baig RB, Varma RS. Chem. Commun. 2013; 49: 752
    • 18c Wang D, Astruc D. Chem. Rev. 2014; 114: 6949
    • 19a Stevens PD, Li G, Fan J, Yen M, Gao Y. Chem. Commun. 2005; 4435
    • 19b Liu J, Peng X, Sun W, Zhao Y, Xia C. Org. Lett. 2008; 10: 3933
    • 19c Baruwati B, Guin D, Manorama SV. Org. Lett. 2007; 90: 5377
    • 19d Jin M.-J, Lee D.-H. Angew. Chem. Int. Ed. 2010; 49: 1119
    • 19e Shylesh S, Wang L, Thiel WR. Adv. Synth. Catal. 2010; 352: 425
    • 19f Li P, Wang L, Zhang L, Wang G.-W. Adv. Synth. Catal. 2012; 354: 1307
    • 19g Zhang L, Li P, Li H, Wang L. Catal. Sci. Technol. 2012; 2: 1859
    • 19h Zhang L, Li P, Yang J, Wang M, Wang L. ChemPlusChem 2014; 79: 217
    • 19i Zhang L, Li P, Liu C, Yang J, Wang M, Wang L. Catal. Sci. Technol. 2014; 4: 1979
  • 20 Tang H, Yao F, Liu L, Cai M. J. Macromol. Sci. Part A: Pure Appl. Chem. 2020; 57: 198
  • 21 Lempers HE. B, Sheldon RA. J. Catal. 1998; 175: 62
  • 22 Posset T, Guenther J, Pope J, Oeser T, Blumel J. Chem Commun. 2011; 47: 2059
  • 23 Kawajiri T, Kato M, Nakata H, Goto R, Aibara S, Ohta R, Fujioka H, Sajiki H, Sawama Y. J. Org. Chem. 2019; 84: 3853
  • 24 Li F, Zhou Y, Yang H, Wang Z, Yu Q, Zhang F.-L. Org. Lett. 2019; 21: 3692
  • 25 Mu B, Li J, Zou D, Wu Y, Chang J, Wu Y. Org. Lett. 2016; 18: 5260
  • 26 Wadhwa K, Verkade JG. J. Org. Chem. 2009; 74: 4368
  • 27 Bunnett JF, Miles JH, Nahabedian KV. J. Am. Chem. Soc. 1961; 83: 2512