Synthesis 2021; 53(08): 1443-1456
DOI: 10.1055/s-0040-1706568
paper

Application of Azide-Tetrazole Tautomerism and Arylsulfanyl Group Dance in the Synthesis of Thiosubstituted Tetrazoloquinazolines

Andris Jeminejs
a   Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, 1048, Latvia   Email: irina.novosjolova@rtu.lv   Email: maris.turks@rtu.lv
,
Svetlana M. Goliškina
a   Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, 1048, Latvia   Email: irina.novosjolova@rtu.lv   Email: maris.turks@rtu.lv
,
Irina Novosjolova
a   Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, 1048, Latvia   Email: irina.novosjolova@rtu.lv   Email: maris.turks@rtu.lv
,
Dmitrijs Stepanovs
b   Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, 1006, Latvia
,
Ērika Bizdēna
a   Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, 1048, Latvia   Email: irina.novosjolova@rtu.lv   Email: maris.turks@rtu.lv
,
Māris Turks
a   Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, 1048, Latvia   Email: irina.novosjolova@rtu.lv   Email: maris.turks@rtu.lv
› Author Affiliations
This work is supported by the Central Finance and Contracting Agency of the Republic of Latvia (ERDF 1.1.1.1. activity project No. 1.1.1.1/16/A/131).


Abstract

Nucleophilic aromatic substitution reaction between 4-aryl­thio-2-chloroquinazolines and NaN3 takes place with an unusual sulfanyl group dance and leads to the formation of 5-(arylthio)tetrazolo[1,5-c]-quinazolines, which do not form the azide tautomer and do not undergo CuAAC reactions with alkynes. On the other hand, 5-azidotetrazolo[1,5-a]quinazoline (formally described as 2,4-diazidoquinazoline) undergoes regioselective nucleophilic aromatic substitution with thiols at C5 and forms 5-(alkyl/arylthio)tetrazolo[1,5-a]quinazolines, the structure of which has been proved by X-ray crystallography. The latter exist in tautomeric equilibrium with their 2-azidoquinazoline form, which provides possibility for copper-catalyzed azide–alkyne 1,3-dipolar cyclo­addition reaction, leading to the 4-alkyl/arylthio-2-(1H-1,2,3-triazol-1-yl)quinazolines.

Supporting Information



Publication History

Received: 14 July 2020

Accepted after revision: 06 October 2020

Article published online:
12 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Khan I, Zaib S, Batool S, Abbas N, Ashraf Z, Iqbal J, Saeed A. Bioorg. Med. Chem. 2016; 24: 2361
    • 1b Ravez S, Castillo-Aguilera O, Depreux P, Goossens L. Expert Opin. Ther. Patents 2015; 25: 789
    • 1c Ajani OO, Aderohunmu DV, Umeokoro EN, Olomieja AO. Bangladesh J. Pharmacol. 2016; 11: 716
    • 2a Cui JJ. ACS Med. Chem. Lett. 2014; 5: 272
    • 2b Ismail RS. M, Ismail NS. M, Abuserii S, El Ella DA. A. Future J. Pharm. Sci. 2016; 2: 9
  • 3 Mehndiratta S, Sapra S, Singh G, Singh M, Nepali K. Recent Patents Anti-Cancer Drug Discov. 2016; 11: 2
  • 4 Dumas J, Sibley R, Smith R, Su N, Chen Y, Wood J, Guernon L, Dixon J, Brennan C, Boyer S. PCT Int. Appl WO 2003055866 A1 20030710, 2003
  • 5 da Silva JF. M, Walters M, Al-Damluji S, Ganellin CR. Bioorg. Med. Chem. 2008; 16: 7254
    • 6a Jafari E, Khajouei MR, Hassanzadeh F, Hakimelahi GH, Khodarahmi GA. Res. Pharm. Sci. 2016; 11: 1
    • 6b Parhi AK, Zhang Y, Saionz KW, Pradhan P, Kaul M, Trivedi K, Pilch DS, LaVoie EJ. Bioorg. Med. Chem. Lett. 2013; 23: 4968
  • 7 Michael JP. Nat. Prod. Rep. 2005; 22: 627
  • 8 El-Azab AS, Abdel-Hamide SG, Sayed-Ahmed MM, Hassan GS, El-Hadiyah TM, Al-Shabanah OA, Al-Deeb OA, El-Subbagh HI. Med. Chem. Res. 2013; 22: 2815
  • 9 Sturino C, Halmos T, décor A, Duplessis M, Deroy P, Jakalian A, Morency L, Kuhn C, Grand-Maitre C, Tremblay M, Brochu C. Patent WO 2015/065338 Al 20150507, 2015
  • 10 Rajasekaran A, Rajamanickam V, Darlinquine S. Eur. Rev. Med. Pharmacol. Sci. 2013; 17: 95
  • 11 Antypenko L, Kovalenko S, Posylkina Y, Nikitin V, Fedyunina N, Ivchuk V. J. Enzyme Inhib. Med. Chem. 2016; 31: 253
  • 12 Buha VM, Rana DN, Chhabria MT, Chikhalia KH, Mahajan BM, Brahmkshatriya PS, Shah NK. Med. Chem. Res. 2013; 22: 4096
  • 13 Wan Z, Hu D, Li P, Xie D, Gan X. Molecules 2015; 20: 11861
  • 14 Al-Omary FA. M, Hassan GS, El-Messery SM, Nagi MN, Habib ES. E, El-Subbagh HI. Eur. J. Med. Chem. 2013; 63: 33
  • 15 Otaka H, Iemura R, Tanaka T, Morimoto Y, Oshima S. Jpn. Kokai Tokkyo Koho JP 03275676 A 19911206, 1991
  • 16 Antypenko OM, Kovalenko SI, Karpenko OV, Nikitin VO, Antypenko LM. Helv. Chim. Acta 2016; 99: 621
  • 17 Li W, Wang X.-Y, Zheng R, Yan H, Cao Z, Zhong L, Wang ZR, Ji P, Yang L.-L, Wang L.-J, Xu Y, Liu JJ, Yang J, Zhang C-H, Ma S, Feng S, Sun Q-Z, Wei Y-Q, Yang S-Y. J. Med. Chem. 2012; 55: 3852
  • 18 Špulák M, Pourová J, Vopršálová M, Mikušek J, Kuneš J, Vacek J, Ghavre M, Gathergood N, Pour M. Eur. J. Med. Chem. 2014; 74: 65
  • 19 Qhobosheane MA, Petzer A, Petzer JP, Legoabe LJ. Bioorg. Med. Chem. 2018; 26: 5531
  • 20 Liu G, Liu C.-P, Ji C.-N, Sun L, Wen Q.-W. Chin. J. Org. Chem. 2008; 28: 525
  • 21 Liu F, Huang Y. Pestic. Biochem. Physiol. 2011; 101: 248
  • 22 Liu J, Wang YL, Zhang JH, Yang JS, Mou HC, Lin J, Yan SJ. ACS Omega 2018; 3: 4534
  • 23 Pulakhandam SK, Katari NK, Jonnalagadda SB. Mol. Divers. 2019; 23: 351
  • 24 Antypenko LM, Kovalenko SI, Antypenko OM, Katsev AM, Achkasova OM. Sci. Pharm. 2013; 81: 15
  • 25 Li E-r, Lin Q, Meng Y-q, Zhang L-y, Song P-p, Li N, Xin J-c, Yang P, Bao C-n, Zhang D-q, Zhang Y, Wang J-k, Zhang Q-r, Liz H-m. Eur. J. Med. Chem. 2019; 172: 36
  • 26 Karuna PS, Murthy RV. V. R, Reddy MR. P, Katari NK, Srinivas K. J. Heterocycl. Chem. 2016; 53: 784
  • 27 Krapf MK, Gallus J, Spindler A, Wiese M. Eur. J. Med. Chem. 2019; 161: 506
  • 28 Rádl S, Hezky P, Proška J, Krejcí I. Arch. Pharm. Pharm. Med. Chem. 2000; 333: 381
  • 29 Fan Z, Shi J, Luo N, Ding M, Bao X. J. Agric. Food Chem. 2019; 67: 11598
  • 30 Verhaeghe P, Dumtre A, Castera-Ducros C, Hutter S, Laget M, Fersing C, Prieri M, Yzombard J, Sifredi F, Rault S, Rathelot P, Vanelle P, Azas N. Bioorg. Med. Chem. Lett. 2011; 21: 6003
  • 31 Yang S, Li Z, Jin L, Song B, Liu G, Chen J, Chen Z, Hu D, Xue W, Xu R. Bioorg. Med. Chem. Lett. 2007; 17: 2193
  • 32 Al-Obaid AM, Abdel-Hamide SG, El-Kashef HA, Abdel-Aziz AA. M, El-Azab AS, Al-Khamees HA, El-Subbagh HI. Eur. J. Med. Chem. 2009; 44: 2379
  • 33 Xu GF, Song BA, Bhadury PS, Yang S, Zhang PQ, Jin LH, Xue W, Hu DY, Lu P. Bioorg. Med. Chem. 2007; 15: 3768
  • 34 Sánchez AI, Martínez-Barrasa V, Burgos C, Vaquero JJ, Alvarez-Builla J, Terricabras E, Segarra V. Bioorg. Med. Chem. 2013; 21: 2370
    • 35a Ananthan S, Rothman RB. PCT Int. Appl WO 2016090296 A1 20160609, 2016
    • 35b Pamukcu R, Piazza G. Patent US 6262059 B1 20010717, 2001
    • 35c Bebbington D, Knegtel R, Binch H, Golec JM. C, Li P, Charrier J.-D. Patent US 7951820 B2 20110531, 2011
    • 35d Goff D, Zhang J, Sylvain C, Singh R, Holland S, Yu J, Heckrodt T, Ding P. PCT Int. Appl WO 2008083356 A1 20080710, 2008
    • 35e Liu F, Huang Y. Pestic. Biochem. Physiol. 2011; 101: 248
    • 35f Kang DA, Zhang HA, Zhou ZA, Huang BA, Naesens LB, Zhan PA, Liu XA. Bioorg. Med. Chem. Lett. 2016; 26: 5182
  • 36 Gatadi S, Gour J, Shukla M, Kaul G, Das S, Dasgupta A, Malasala S, Borra RS, Madhavi YV, Chopra S, Nanduri S. Eur. J. Med. Chem. 2018; 157: 1056
  • 37 Kalniņa A, Bizdēna Ē, Kiselovs G, Mishnev A, Turks M. Chem. Heterocycl. Compd. 2014; 49: 1667
    • 38a Novosjolova I, Bizdēna Ē, Turks M. Tetrahedron Lett. 2013; 54: 6557
    • 38b Kovaļovs A, Novosjolova I, Bizdēna Ē, Bižāne I, Skardziute L, Kazlauskas K, Jursenas S, Turks M. Tetrahedron Lett. 2013; 54: 850
    • 38c Cīrule D, Ozols K, Platnieks O, Bizdēna Ē, Māliņa I, Turks M. Tetrahedron 2016; 72: 4177
    • 38d Novosjolova I, Bizdēna Ē, Turks M. Eur. J. Org. Chem. 2015; 3629
    • 38e Ozols K, Cīrule D, Novosjolova I, Stepanovs D, Liepinsh E, Bizdēna Ē, Turks M. Tetrahedron Lett. 2016; 57: 1174
    • 39a Šišuļins A, Bucevičius J, Tseng Y-T, Novosjolova I, Traskovskis K, Bizdēna Ē, Chang H-T, Tumkevičius S, Turks M. Beilstein J. Org. Chem. 2019; 15: 474
    • 39b Bucevičius J, Turks M, Tumkevičius S. Synlett 2018; 29: 525
  • 40 Zaķis JM, Ozols K, Novosjolova I, Vilskersts R, Mishnev A, Turks M. J. Org. Chem. 2020; 85: 4753
  • 41 Curd FH. S, Hoggarth E, Landquist JK, Rose FL. J. Chem. Soc. 1948; 1766
  • 42 Krivopalov VP, Baram SG, Denisov AY, Mamatyuk VI. Bull. Acad. Sci. USSR Div. Chem. Sci. 1989; 38: 1839
  • 43 CCDC 1975495 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 44 Sebris A, Turks M. Chem. Heterocycl. Compd. 2019; 55: 1041
    • 45a Worrell BT, Malik JA, Fokin VV. Science 2013; 340: 457
    • 45b Haldón E, Nicasio MC, Pérez PJ. Org. Biomol. Chem. 2015; 13: 9528
  • 46 Wang HJ, Wei CX, Deng XQ, Li FL, Quan ZS. Arch. Pharm. (Weinheim) 2009; 342: 671