Synthesis 2021; 53(11): 1923-1930
DOI: 10.1055/s-0040-1706008
paper

Methanesulfonic Acid Catalyzed Friedel–Crafts Reaction of Electron-Rich Arenes with N-Arylmaleimides: A Highly Efficient Metal-Free Route To Access 3-Arylsuccinimides

Deepti Gairola
,
We gratefully acknowledge the SERB (Research grant No. EMR/2017/000174) for financial support.


Abstract

Friedel–Crafts reaction is widely used for the C–C bond forming reaction to enable the direct connection of electron-rich arenes to electron-deficient olefins with high regioselectivity. Herein, a highly efficient, metal-free, and environmentally benign F–C strategy of electron-rich arenes with N-arylmaleimides has been developed for the construction of 3-arylsuccinimides in the presence of a green reagent methanesulfonic acid under mild reaction conditions. This highly facile and high-yielding protocol has compatibility with different electron-rich arenes.

Supporting Information



Publication History

Received: 17 September 2020

Accepted after revision: 09 December 2020

Article published online:
18 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Porter RJ, Penry JK, Lacy JR, Newmark ME, Kupferberg HJ. Neurology 1979; 29: 1509
    • 1b Nakamura N, Hirakawa A, Gao J, Kakuda H, Shiro M, Komatsu Y, Sheu C, Hattori M. J. Nat. Prod. 2004; 67: 46
    • 1c Geethangili M, Tzeng Y. Evid. Based Complementary Altern. Med. 2011; 212641 DOI: 10.1093/ecam/nep108.
    • 1d Garad DN, Tanpure SD, Mhaske SB. Beilstein J. Org. Chem. 2015; 11: 1008
    • 1e Han Z, Li P, Zhang Z, Chen C, Wang Q, Dong X.-Q, Zhang X. ACS Catal. 2016; 6: 6214
    • 1f Kavitha K, Praveena KS. S, Ramarao EV. V. S, Murthy NY. S, Pal S. Curr. Org. Chem. 2016; 20: 1955
    • 1g Seiler MP, Nozulak J. WO EP861 20010126, 2001
    • 2a Stewart SG, Ho LA, Polomska ME, Percival AT, Yeoh GC. ChemMedChem 2009; 4: 1657
    • 2b Guan Q, Zuo D, Jiang N, Qi H, Zhai Y, Bai Z, Feng D, Yang L, Jiang M, Bao K, Li C, Wu Y, Zhang W. Bioorg. Med. Chem. Lett. 2015; 25: 631
    • 2c Mandal A, Sahoo H, Dana S, Baidya M. Org. Lett. 2017; 19: 4138
    • 3a Elduque X, Sanchez A, Sharma K, Pedroso E, Grandas A. Bioconjugate Chem. 2013; 24: 832
    • 3b Fang Q, Wang J, Gu S, Kaspar RB, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. J. Am. Chem. Soc. 2015; 137: 8352
    • 4a Miller CA, Long LM. J. Am. Chem. Soc. 1951; 73: 4895
    • 4b Miller CA, Scholl HI, Long LM. J. Am. Chem. Soc. 1951; 73: 5608
    • 4c Daly MJ, Jones GW, Nicholls PJ, Smith HJ, Rowlands MG, Bunnett MA. J. Med. Chem. 1986; 29: 520
    • 4d Kaminski K, Obniska J, Chlebek I, Wiklik B, Rzepka S. Bioorg. Med. Chem. 2013; 21: 6821
  • 5 Banwell MG, Jones MT, Loong DT. J, Lupton DW, Pinkerton DM, Ray JK, Willis AC. Tetrahedron 2010; 66: 9252
    • 6a Wrobel ZM, Chodkowski A, Herold F, Marciniak M, Dawidowski M, Siwek A, Starowicz G, Stachowicz K, Szewczyk B, Nowak G, Belka M, Baczek T, Satala G, Bozarski JA, Turlo J. Eur. J. Med. Chem. 2019; 183: 111736
    • 6b An YL, Shao ZY, Cheng J, Zhao SY. Synthesis 2013; 45: 2719
    • 6c An YL, Deng YL, Zhang W, Zhao SY. Synthesis 2015; 47: 1581
    • 6d Yang Z, Zhu J, Wen C, Ge Y, Zhao S. Chin. J. Org. Chem. 2019; 39: 2412
    • 7a Bettadapur KR, Lanke V, Prabhu KR. Org. Lett. 2015; 17: 4658
    • 7b Lanke V, Bettadapur KR, Prabhu KR. Org. Lett. 2015; 17: 4662
    • 7c Keshri P, Bettadapur KR, Lanke V, Prabhu KR. J. Org. Chem. 2016; 81: 6056
    • 8a Bergman RG. Nature 2007; 446: 391
    • 8b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 8c Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 8d Ackermann L. Chem. Rev. 2011; 111: 1315
    • 8e Patureau FW, Wencel-Delord J, Glorius F. Aldrichimica Acta 2012; 45: 31
    • 8f Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 8g Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
    • 8h Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 8i Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
  • 9 Driller KM, Klein H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2009; 48: 6041
    • 10a Hayashi T, Shintani R, Duan WL. J. Am. Chem. Soc. 2006; 128: 5628
    • 10b Iyer PS, O’Malley MM, Lucas MC. Tetrahedron Lett. 2007; 48: 4413
  • 11 Koltunov KY, Prakash GK. S, Rasul G, Olah GA. Eur. J. Org. Chem. 2006; 4861
  • 12 Li B, Mao Q, Zhou J, Liu F, Ye N. Org. Biomol. Chem. 2019; 17: 2242
    • 13a Schafer G, Bode JW. Angew. Chem. Int. Ed. 2011; 50: 10913
    • 13b Mori K, Wakazawa M, Akiyama T. Chem. Sci. 2014; 5: 1799
    • 13c Wang YQ, Wei ZS, Zhu CQ, Ren YY, Wu C. Tetrahedron 2016; 72: 4643
    • 14a Sharma N, Peddinti RK. J. Org. Chem. 2017; 82: 918
    • 14b Sharma S, Parumala SK. R, Peddinti RK. J. Org. Chem. 2017;  82: 9367
  • 15 Baker SC, Kelly DP, Murrell JC. Nature 1991; 350: 627
  • 16 CCDC 2007843 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 17a Motiwala HF, Vekariya RH, Aube J. Org. Lett. 2015; 17: 5484
    • 17b Vekariya RH, Aube J. Org. Lett. 2016; 18: 3534
    • 17c Ratnikov MO, Tumanov VV, Smit WA. Angew. Chem. Int. Ed. 2008; 47: 9739
    • 17d Tang R.-J, Milcent T, Crousse B. Eur. J. Org. Chem. 2017; 4753
  • 18 Mandal R, Emayavaramban B, Sundararaju B. Org. Lett. 2018; 20: 2835