Synthesis 2021; 53(09): 1597-1604
DOI: 10.1055/s-0040-1705976
paper

An Efficient Substrate-Induced Method for the Synthesis of CF3-Substituted Cyclopropanes by Metal-Free Reaction of Trifluoromethyl Styrylisoxazoles with Nitromethane

Qing-he Zhao
a   Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, P. R. of China
,
Guang-hao Yu
a   Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, P. R. of China
,
Ye-chen Meng
c   Hengshui No. 5 Middle School, Shengli West Road, Hengshui, Hebei Province, P. R. of China
,
Feng Sui
a   Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, P. R. of China
,
Mi-yi Yang
a   Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, P. R. of China
,
Li Liu
a   Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, P. R. of China
,
Hui-jie Li
a   Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, P. R. of China
,
Feng Li
b   College of Chemistry and Chemical Engineering, Shangqiu Normal University, 298 Wenhua Road, Shangqiu, Henan 476000, P. R. of China
,
Hai Ma
a   Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, P. R. of China
› Author Affiliations
We thank the Voluntary Program of China Academy of Chinese Medical Sciences (ZZ0908028) for financial support.


Abstract

A series of (trifluoromethyl)cyclopropanes (TFCPs) tolerating a broad range of functional groups, known as tert-butyl bioisosteres, have been obtained from the cyclization reaction between nitromethane­ and 5-[β-(trifluoromethyl)styryl]isoxazoles in 70–94% yields and 75:25 to 90:10 dr. This method offers practical access to this cyclopropyl moiety of pharmacological interest, employing an inorganic base under phase-transfer conditions.

Supporting Information



Publication History

Received: 02 October 2020

Accepted after revision: 21 October 2020

Article published online:
19 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lau YY, Krishna G, Yumibe NP, Grotz DE, Sapidou E, Norton L, Chu I, Chen C, Soares AD, Lin C.-C. Pharm. Res. 2002; 19: 1606
    • 2a Pauling L. The Nature of the Chemical Bond . Cornell University Press; Ithaca: 1960
    • 2b Bondi A. J. Phys. Chem. 1964; 68: 441
    • 3a Themed issue on Fluorous Chemistry: Gladysz JA, Curran DP. Eds. Tetrahedron 2002; 58: 3823-4132
    • 3b Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
    • 3c Bégué JP, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008
    • 3d Braun MG, Katcher MH, Doyle AG. Chem. Sci. 2013; 4: 1216
    • 3e Westphal MV, Wolfstädter BT, Plancher JM, Gatfield J, Carreira EM. ChemMedChem 2015; 10: 461
    • 3f Barnes-Seeman D, Jain M, Bell L, Ferreira S, Cohen S, Chen ZH, Amin J, Snodgrass B, Hatsis P. ACS Med. Chem. Lett. 2013; 4: 514
    • 3g Sebhat IK, Franklin C, Lo MM.-C, Chen D, Jewell JP, Miller R, Pang J, Palyha O, Kan Y, Kelly TM, Guan X.-M, Marsh DJ, Kosinski JA, Metzger JM, Lyons K, Dragovic J, Guzzo PR, Henderson AJ, Reitman ML, Nargund RP, Wyvratt MJ, Lin LS. ACS Med. Chem. Lett. 2011; 2: 43
    • 3h Cho EJ, Senecal TD, Kinzel K, Zhang Y, Watson DA, Buchwald SL. Science 2010; 328: 1679
    • 3i Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
    • 3j Zeng Y, Zhang L, Zhao Y, Ni C, Zhao J, Hu J. J. Am. Chem. Soc. 2013; 135: 2955
    • 4a Bezençon O, Heidmann B, Siegrist R, Stamm S, Richard S, Pozzi D, Corminboeuf O, Roch C, Kessler M, Ertel EA, Reymond I, Pfeifer T, de Kanter R, Toeroek-Schafroth M, Moccia LG, Mawet J, Moon R, Rey M, Capeleto B, Fournier E. J. Med. Chem. 2017; 60: 9769
    • 4b Wityak J, McGee KF, Conlon MP, Song RH, Duffy BC, Clayton B, Lynch M, Wang G, Freeman E, Haber J, Kitchen DB, Manning DD, Ismail J, Khmelnitsky Y, Michels P, Webster J, Irigoyen M, Luche M, Hultman M, Bai M, Kuok ID, Newell R, Lamers M, Leonard P, Yates D, Matthews K, Ongeri L, Clifton S, Mead T, Deupree S, Wheelan P, Lyons K, Wilson C, Kiselyov A, Toledo-Sherman L, Beconi M, Muñoz-Sanjuan I, Bard J, Dominguez C. J. Med. Chem. 2015; 58: 2967
    • 4c Mori T, Ujihara K, Matsumoto O, Yanagi K, Matsuo N. J. Fluorine Chem. 2007; 128: 1174
    • 4d Lapointe BT, Fuller PH, Gunaydin H, Liu K, Sciammetta N, Trotter BW, Zhang H, Barr KJ, MacLean JK. F, Molinari D, Simov V. US 2018016239, 2018
    • 4e Liu G, Abraham S, Liu X, Xu S, Rooks AM, Nepomuceno R, Dao A, Brigham D, Gitnick D, Insko DE, Gardner MF, Zarrinkar PP, Christopher R, Belli B, Armstrong RC, Holladay MW. Bioorg. Med. Chem. Lett. 2015; 25: 3436
    • 4f Grygorenko OO, Artamonov OS, Komarov IV, Mykhailiuk PK. Tetrahedron 2011; 67: 803
    • 4g Bos M, Poisson T, Pannecoucke X, Charette AB, Jubault P. Chem. Eur. J. 2017; 23: 4950
  • 5 Le Maux P, Juillard S, Simonneaux G. Synthesis 2006; 1701
    • 6a Morandi B, Mariampillai B, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 1101
    • 6b Tinoco A, Steck V, Tyagi V, Fasan R. J. Am. Chem. Soc. 2017; 139: 5293
    • 6c Li S, Cao W.-J, Ma J.-A. Synlett 2017; 28: 673
    • 6d Kotozaki M, Chanthamath S, Fujii T, Shibatomi K, Iwasa S. Chem. Commun. 2018; 54: 5110
    • 6e Wei Y, Tinoco A, Steck V, Fasan R, Zhang Y. J. Am. Chem. Soc. 2018; 140: 1649
    • 6f Huang W.-S, Schlinquer C, Poisson T, Pannecoucke X, Charette AB, Jubault P. Chem. Eur. J. 2018; 24: 10339
    • 6g Artamonov OS, Slobodyanyuk EY, Volochnyuk DM, Komarov IV, Tolmachev AA, Mykhailiuk PK. Eur. J. Org. Chem. 2014; 3592
    • 6h Artamonov OS, Mykhailiuk PK, Voievoda NM, Volochnyuk DM, Komarov IV. Synthesis 2010; 443
    • 6i Artamonov OS, Slobodyanyuk EY, Shishkin OV, Komarov IV, Mykhailiuk PK. Synthesis 2013; 45: 225
    • 6j Zhu C.-L, Yang L.-J, Li S, Zheng Y, Ma J.-A. Org. Lett. 2015; 17: 3442
    • 6k Zhu C.-L, Ma J.-A, Cahard D. Asian J. Org. Chem. 2016; 5: 66
    • 6l Lv S, Zhou H, Yu X, Xu Y, Zhu H, Wang M, Liu H, Dai Z, Sun G, Gong X, Sun X, Wang L. Commun. Chem. 2019; 2: 69
    • 7a Burtoloso AC. B, Dias RM. P, Leonarczyk IA. Eur. J. Org. Chem. 2013; 2013: 5005
    • 7b Deng X.-Y, Lin J.-H, Xiao J.-C. J. Fluorine Chem. 2015; 179: 116
    • 7c Deng X.-Y, Lin J.-H, Zheng J, Xiao J.-C. Chem. Commun. 2015; 51: 8805
    • 7d Zheng J, Lin J.-H, Deng X.-Y, Xiao J.-C. Org. Lett. 2015; 17: 532
    • 7e Zheng J, Lin J.-H, Yu L.-Y, Wei Y, Zheng X, Xiao J.-C. Org. Lett. 2015; 17: 6150
    • 7f Duan Y, Zhou B, Lin J.-H, Xiao JC. Chem. Commun. 2015; 51: 13127
    • 7g Duan Y, Lin J.-H, Xiao JC, Gu Y.-C. Org. Lett. 2016; 18: 2471
    • 7h Hock KJ, Hommelsheim R, Mertens L, Ho J, Nguyen TV, Koenigs RM. J. Org. Chem. 2017; 82: 8220
    • 7i Huang Q, Zheng Q, Duan Y, Lin J.-H, Xiao J.-C, Zheng X. J. Org. Chem. 2017; 82: 8273
    • 7j Wang Z, Yang Y, Gao F, Wang Z, Luo Q, Fang L. Org. Lett. 2018; 20: 934
    • 7k Cheng B, Zu B, Li Y, Tao C, Zhang C, Wang R, Li Y, Zhai H. Org. Biomol. Chem. 2018; 16: 3564
    • 8a Müller P, Grass S, Shahi SP, Bernardinelli G. Tetrahedron 2004; 60: 4755
    • 8b Wang Y, Zhu S, Zhu G, Huang Q. Tetrahedron 2001; 57: 7337
    • 8c Denton JR, Sukumaran D, Davies HM. L. Org. Lett. 2007; 9: 2625
    • 9a Fuchikami T, Shibata Y, Suzuki Y. Tetrahedron Lett. 1986; 27: 3173
    • 9b Gröger C, Musso H, Roßnagel I. Chem. Ber. 1980; 113: 3621
  • 10 Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
    • 11a Zhang H, Barr KJ, Lapointe BT, Gunaydin H, Liu K, Trotter BW. WO 2017075185, 2017
    • 11b Winter M, Gaunersdorfer C, Roiser L, Zielke K, Monkowius U, Waser M. Eur. J. Org. Chem. 2018; 2018: 418
    • 11c Allgäuer DS, Jangra H, Asahara H, Li Z, Chen Q, Zipse H, Ofial AR, Mayr H. J. Am. Chem. Soc. 2017; 139: 13318
    • 11d Riches SL, Saha C, Fontán Filgueira N, Grange E, McGarrigle EM, Aggarwal VK. J. Am. Chem. Soc. 2010; 132: 7626
    • 12a Mercadante MA, Kelly CB, Hamlin TA, Delle Chiaie KR, Drago MD, Duffy KK, Dumas MT, Fager DC, Glod BL. C, Hansen KE, Hill CR, Leising RM, Lynes CL, MacInnis AE, McGohey MR, Murray SA, Piquette MC, Roy SL, Smith RM, Sullivan KR, Truong BH, Vailonis KM, Gorbatyuk V, Leadbeater NE, Tilley LJ. Chem. Sci. 2014; 5: 3983
    • 12b Kelly CB, Mercadante MA, Carnaghan ER, Doherty MJ, Fager DC, Hauck JJ, MacInnis AE, Tilley LJ, Leadbeater NE. Eur. J. Org. Chem. 2015; 2015: 4071
    • 13a Zhang Y, Wei B.-W, Lin H, Zhang L, Liu J.-X, Luo H.-Q, Fan X.-L. Green Chem. 2015; 17: 3266
    • 13b Zhang Y, Wei B.-W, Zou L.-N, Kang M.-L, Luo H.-Q, Fan X.-L. Tetrahedron 2016; 72: 2472
    • 14a Xie J.-W, Wang Z, Yang W.-J, Kong L.-C, Xu D.-C. Org. Biomol. Chem. 2009; 7: 4352
    • 14b Chen Z, Zheng Y, Ma J.-A. Angew. Chem. Int. Ed. 2017; 56: 4569
    • 14c Kashihara M, Yadav MR, Nakao Y. Org. Lett. 2018; 20: 1655
    • 14d Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
  • 15 CCDC 1574943 (2i) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 16 Kawai H, Yuan Z, Kitayama T, Tokunaga E, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 5575
  • 17 pKa prediction platform, all rights reserved by the Luo group in the Department of Chemistry, Tsinghua University. Home page (accessed Nov 18, 2020): pka.luoszgroup.com.
    • 18a Del Fiandra C, Piras L, Fini F, Disetti P, Moccia M, Adamo MF. A. Chem. Commun. 2012; 48: 3863
    • 18b Moccia M, Wells RJ, Adamo MF. A. Org. Biomol. Chem. 2015; 13: 2192
  • 19 Baschieri A, Bernardi L, Ricci A, Suresh S, Adamo MF. A. Angew. Chem. Int. Ed. 2009; 48: 9342