Synthesis 2021; 53(07): 1307-1314
DOI: 10.1055/s-0040-1705964
paper

Decagram Synthesis of Dimethyl 1,4-Cubanedicarboxylate Using Continuous-Flow Photochemistry

Diego E. Collin
,
Edward H. Jackman
,
Nicolas Jouandon
,
Wei Sun
,
Mark E. Light
,
David C. Harrowven
,
Bruno Linclau
School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK   Email: bruno.linclau@soton.ac.uk
› Author Affiliations
The authors acknowledge financial support from the ERDF (LabFact: InterReg V project 121) and EPSRC (Photo-Electro Programme Grant EP/P013341/1, and EP/K039466/1).


Abstract

The highly strained cubane system is of great interest as a scaffold and rigid linker in both pharmaceutical and materials chemistry. A straightforward approach is reported for the scale-up of a [2+2] photocycloaddition step using convenient home-made flow photoreactors to access dimethyl 1,4-cubanedicarboxylate on decagram-scale in 33–40% yield over 8 steps. The process is demonstrated on 3.4 g·h–1 input with 30 minutes residence time, enabling to reduce the process time and to avoid the use of batch photoreactors. Completion of the characterisation of the photocycloadduct and its hydrates is reported.

Supporting Information



Publication History

Received: 31 August 2020

Accepted after revision: 28 September 2020

Article published online:
04 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Eaton PE, Cole TW. J. Am. Chem. Soc. 1964; 86: 962
  • 2 Zhang M, Eaton PE, Gilardi R. Angew. Chem. Int. Ed. 2000; 39: 401
  • 3 Eaton PE. Angew. Chem. Int. Ed. 1992; 31: 1421
  • 4 Macreadie LK, Mensforth EJ, Babarao R, Konstas K, Telfer SG, Doherty CM, Tsanaktsidis J, Batten SR, Hill MR. J. Am. Chem. Soc. 2019; 141: 3828
  • 5 Huang H.-T, Zhu L, Ward MD, Wang T, Chen B, Chaloux BL, Wang Q, Biswas A, Gray JL, Kuei B, Cody GD, Epshteyn A, Crespi VH, Badding JV, Strobel TA. J. Am. Chem. Soc. 2020; 142: 17944
  • 6 Locke GM, Bernhard SS. R, Senge MO. Chem. Eur. J. 2019; 25: 4590
  • 7 Biegasiewicz KF, Griffiths JR, Savage GP, Tsanaktsidis J, Priefer R. Chem. Rev. 2015; 115: 6719
    • 8a Flanagan KJ, Bernhard SS. R, Plunkett S, Senge MO. Chem. Eur. J. 2019; 25: 6941
    • 8b Grover N, Locke GM, Flanagan KJ, Beh MH. R, Thompson A, Senge MO. Chem. Eur. J. 2020; 26: 2405
  • 9 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
  • 10 Chalmers BA, Xing H, Houston S, Clark C, Ghassabian S, Kuo A, Cao B, Reitsma A, Murray C.-EP, Stok JE, Boyle GM, Pierce CJ, Littler SW, Winkler DA, Bernhardt PV, Pasay C, De Voss JJ, McCarthy J, Parsons PG, Walter GH, Smith MT, Cooper HM, Nilsson SK, Tsanaktsidis J, Savage GP, Williams CM. Angew. Chem. Int. Ed. 2016; 55: 3580 ; corrigendum: Angew. Chem. Int. Ed. 2018, 57, 8359
  • 11 Tse EG, Houston SD, Williams CM, Savage GP, Rendina L, Hallyburton I, Anderson M, Sharma R, Walker GS, Obach RS, Todd MH. J. Med. Chem. 2020; 63: 11585
  • 12 Mykhailiuk PK. Org. Biomol. Chem. 2019; 17: 2839
  • 13 Sodano TM, Combee LA, Stephenson CR. J. ACS Med. Chem. Lett. 2020; 11: 1785
    • 14a Reekie TA, Williams CM, Rendina LM, Kassiou M. J. Med. Chem. 2019; 62: 1078
    • 14b Wlochal J, Davies RD. M, Burton J. Org. Lett. 2014; 16: 4094
  • 15 Nicolaou KC, Vourloumis D, Totokotsopoulos S, Papakyriakou A, Karsunky H, Fernando H, Gavrilyuk J, Webb D, Stepan AF. ChemMedChem 2016; 11: 31
  • 16 Houston SD, Fahrenhorst-Jones T, Xing H, Chalmers BA, Sykes ML, Stok JE, Farfan Soto C, Burns JM, Bernhardt PV, De Voss JJ, Boyle GM, Smith MT, Tsanaktsidis J, Savage GP, Avery VM, Williams CM. Org. Biomol. Chem. 2019; 17: 6790
  • 17 Joubert J, Geldenhuys WJ, VanderSchyf CJ, Oliver DW, Kruger HG, Govender T, Malan SF. ChemMedChem 2012; 7: 375
  • 18 Danon JJ, Reekie TA, Kassiou M. Trends Chem. 2019; 1: 612
  • 19 Wilkinson SM, Gunosewoyo H, Barron ML, Boucher A, McDonnell M, Turner P, Morrison DE, Bennett MR, McGregor IS, Rendina LM, Kassiou M. ACS Chem. Neurosci. 2014; 5: 335
  • 20 Chapman NB, Key JM, Toyne KJ. J. Org. Chem. 1970; 35: 3860
  • 21 DePuy CH, Ponder BW, Fitzpatrick JD. J. Org. Chem. 1964; 29: 3508
  • 22 Bliese M, Tsanaktsidis J. Aust. J. Chem. 1997; 50: 189
  • 23 Falkiner MJ, Littler SW, McRae KJ, Savage GP, Tsanaktsidis J. Org. Process Res. Dev. 2013; 17: 1503
  • 24 Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J. Org. Chem. 2012; 8: 2025
  • 25 Eaton PE, Xiong Y, Zhou JP. J. Org. Chem. 1992; 57: 4277
    • 26a Su Y, Straathof NJ. W, Hessel V, Noël T. Chem. Eur. J. 2014; 20: 10562
    • 26b Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 1027
  • 27 Aillet T, Loubiere K, Dechy-Cabaret O, Prat L. Chem. Eng. Process. Process Intensif. 2013; 64: 38
  • 28 Bényei GY, Jalsovszky I, Slugovc C, Trimmel G, Pelzl G, Vajda A, Éber N, Fodor-Csorba K. Liq. Cryst. 2005; 32: 197
  • 29 Harrowven DC, Mohamed M, Gonçalves TP, Whitby RJ, Bolien D, Sneddon HF. Angew. Chem. Int. Ed. 2012; 51: 4405
    • 30a Dallaston MA, Brusnahan JS, Wall C, Williams CM. Chem. Eur. J. 2019; 25: 8344
    • 30b Dallaston MA, Houston SD, Williams CM. Chem. Eur. J. 2020; 26: 11966
  • 31 Ingalsbe ML, St Denis JD, Gleason JL, Savage GP, Priefer R. Synthesis 2010; 98