Synlett 2021; 32(01): 51-56
DOI: 10.1055/s-0040-1705944
letter

Reductive Deuteration of Aromatic Esters for the Synthesis of α,α-Dideuterio Benzyl Alcohols Using D2O as Deuterium Source

Shihui Luo
a   Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. of China
,
Chaoqun Weng
a   Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. of China
,
Yuxuan Ding
a   Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. of China
,
Chen Ling
b   Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. of China   Email: jie_an@cau.edu.cn
,
c   Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
,
Xiaodong Ma
d   College of Science, China Agricultural University, Beijing 100083, P. R. of China   Email: maxiaodong@cau.edu.cn
,
Jie An
b   Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. of China   Email: jie_an@cau.edu.cn
› Author Affiliations
We thank the National Key Research and Development Plan of China (2017YFD0200504), the National Natural Science Foundation of China (NSFC; 11801558), the Natural Science Foundation of Beijing Municipality (2192026), and Tianjin Haiyi Tech. Ltd. for financial support.


Abstract

α,α-Dideuterio benzyl alcohols are important building blocks for the synthesis of deuterium-labeled medicines and agrochemicals. We have developed the first general single-electron transfer reductive deuteration of readily commercially available aromatic esters for the synthesis of α,α-dideuterio benzyl alcohols using benign D2O and a mild single-electron donor SmI2. This operationally convenient method features very good functional group tolerance and high deuterium incorporations (>95% D2). The potential impact has been exemplified by the synthesis of numerous deuterium labeled building blocks of important bioactive compounds. Most crucially, the method represents the first example of selective reductive deuteration of benzylic-type ketyl radicals using mild and highly chemoselective lanthanide(II) reagents.

Supporting Information



Publication History

Received: 28 August 2020

Accepted after revision: 17 September 2020

Article published online:
16 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 For a recent review, see: Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
  • 2 Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066

    • For recent reviews, see:
    • 3a Pirali T, Sera M, Cargnin S, Genazzani AA. J. Med. Chem. 2019; 62: 5276
    • 3b Gant TG. J. Med. Chem. 2014; 57: 3595

    • For selected recent examples, see:
    • 3c Mullard A. Nat. Rev. Drug Discovery 2016; 15: 219
    • 3d Schmidt C. Nat. Biotechnol. 2017; 35: 493
    • 3e Tong CC, Hwang KC. J. Phys. Chem. C 2007; 111: 3490
    • 3f Shao M, Keum J, Chen J, He Y, Chen W, Browning JF, Jakowski J, Sumpter BG, Ivanov IN, Ma Y.-Z, Rouleau CM, Smith SC, Geohegan DB, Hong K, Xiao K. Nat. Commun. 2014; 5: 3180
  • 4 Zhang Z, Tang W. Acta Pharm. Sin. B 2018; 8: 721
    • 5a Leonetti F, Capaldi C, Pisani L, Nicolotti O, Muncipinto G, Stefanachi A, Cellamare S, Caccia C, Carotti A. J. Med. Chem. 2007; 50: 4909
    • 5b Pan X, Huang R, Zhang J, Ding L, Li W, Zhang Q, Liu F. Tetrahedron Lett. 2012; 53: 5364
    • 5c Li W, You XD, Wu J. CN104230809A, 2014
    • 5d Wipf P, Tzounopoulos A. WO 2016077724 2016
    • 5e Dong D, Tian X, Liu Q, Liang Y, Wang C, Liang F, Sun Z, Yu H, Ouyang Y. CN1775750A, 2006
    • 5f Lee LF, Schleppnik FM, Howe RK. J. Heterocycl. Chem. 1985; 22: 1621
    • 5g Cuevas Yañez E, Canul Sánchez A, Serrano Becerra JM, Muchowski J, Cruz Almanza R. Rev. Soc. Quim. Mex. 2004; 48: 49
    • 6a Ding Y, Luo S, Weng C, An J. J. Org. Chem. 2019; 84: 15098
    • 6b Ding Y, Luo S, Adijiang A, Zhao H, An J. J. Org. Chem. 2018; 83: 12269
    • 6c Han M, Ding Y, Yan Y, Li H, Luo S, Adijiang A, Ling Y, An J. Org. Lett. 2018; 20: 3010
    • 6d Zhang B, Li H, Ding Y, Yan Y, An J. J. Org. Chem. 2018; 83: 6006
    • 6e Han M, Ma X, Yao S, Ding Y, Yan Z, Adijiang A, Wu Y, Li H, Zhang Y, Lei P, Ling Y, An J. J. Org. Chem. 2017; 82: 1285
    • 6f Li H, Zhang B, Dong Y, Liu T, Zhang Y, Nie H, Yang R, Ma X, Ling Y, An J. Tetrahedron Lett. 2017; 58: 2757
    • 7a Li H, Hou Y, Liu C, Lai Z, Ning L, Szostak R, Szostak M, An J. Org. Lett. 2020; 22: 1249
    • 7b Szostak M, Spain M, Procter DJ. Org. Lett. 2014; 16: 5052
    • 8a Shi S, Szostak M. Molecules 2017; 22: 2018
    • 8b Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959

    • For recent selected reviews on radical reactions, see:
    • 8c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 8d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 8e Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 8f Staveness D, Bosque I, Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
    • 8g Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 8h Lang X, Chen X, Zhao J. Chem. Soc. Rev. 2014; 43: 473
    • 8i Xuan J, Zhang ZG, Xiao WJ. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 8j Wang L, Lear JM, Rafferty SM, Fosu SC, Nagib DA. Science 2018; 362: 225
    • 8k Boyington AJ, Riu ML, Jui NT. J. Am. Chem. Soc. 2017; 139: 6582

    • For an excellent review on acyl radicals, see:
    • 8l Banerjee A, Lei Z, Ngai MY. Synthesis 2019; 51: 303
    • 9a Khaskin E, Milstein D. ACS Catal. 2013; 3: 448
    • 9b Balzarek C, Weakley TJ. R, Tyler DR. J. Am. Chem. Soc. 2000; 122: 9427
    • 9c Albrecht M, Lindner MM. Dalton Trans. 2011; 40: 8986
    • 9d Bai W, Lee K.-H, Tse SK. S, Chan KW, Lin Z, Jia G. Organometallics 2015; 34: 3686
  • 10 Chatterjee B, Gunanathan C. Org. Lett. 2015; 17: 4794
    • 11a Mo X, Yakiwchuk J, Dansereau J, McCubbin JA, Hall DG. J. Am. Chem. Soc. 2015; 137: 9694

    • For a recent reductive deoxygenative deuteration reaction, see:
    • 11b Zhang M, Yuan X.-A, Zhu C, Xie J. Angew. Chem. Int. Ed. 2019; 58: 312
  • 12 Bodnar BS, Vogt PF. J. Org. Chem. 2009; 74: 2598 ; and references cited therein
  • 13 Ankner T, Hilmersson G. Tetrahedron 2009; 65: 10856
  • 14 Tsuruta H, Imamoto T, Yamaguchi K. Chem. Commun. 1999; 1703
    • 15a Denton RM, An J, Adeniran B. Chem. Commun. 2010; 46: 3025
    • 15b Denton RM, An J, Adeniran B, Blake AJ, Lewis W, Poulton AM. J. Org. Chem. 2011; 76: 6749
    • 15c Beddoe RH, Andrews KG, Magne V, Cuthbertson JD, Saska J, Shannon-Little AL, Shanahan SE, Sneddon HF, Denton RM. Science 2019; 365: 910
  • 16 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
  • 17 Stoochnoff BA, Benoiton NL. Tetrahedron Lett. 1973; 14: 21
  • 18 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 19 It should be noted that in addition to delivering as a mild single-electron donor that well-tolerates benign deuterium donor D2O, SmI2 is readily synthesized from Sm metal (<$1.00/g, Energy Chemical, Feb 8, 2020) and I2. See: Szostak M, Spain M, Procter DJ. J. Org. Chem. 2012; 77: 3049 DOI: ; and references cited therein.
  • 20 Typical Procedure for the Preparation of Model Compound (4-Heptylphenyl)methan-d2 -ol (2a) To a solution of samarium(II) iodide (0.10 M in THF; 12 mL, 1.2 mmol, 6.0 equiv) a solution of methyl 4-heptylbenzoate (46.9 mg, 0.200 mmol) in THF (2.0 mL) was added, followed by Et3N (0.33 mL, 2.4 mmol) and D2O (0.261 mL, 14.4 mmol) under Ar at room temperature and stirred vigorously. After 15 min, the excess of SmI2 was oxidized by bubbling air through the reaction mixture. The reaction mixture was diluted with CH2Cl2 (10 mL) and NaOH (10 mL, 1 M, aq). The aqueous layer was extracted with CH2Cl2 (3 × 10 mL), organic layers were combined, washed with Na2S2O3 (2 × 20 mL, sat., aq), dried over MgSO4, filtered, and concentrated. The crude product was purified by flash chromatography (silica, 15% EtOAc/hexane) to afford 2a (40.8 mg, 98%) as a colorless oil. Percentage of exchanged protons are determined by 1H NMR spectroscopy indicated in square brackets in Scheme 2. 1H NMR (300 MHz, CDCl3): δ = 7.26 (m, 2 H), 7.16 (m, 2 H), 2.59 (t, J = 7.7 Hz, 2 H), 1.86 (br, 1 H), 1.60 (m, 2 H), 1.38–1.19 (m, 8 H), 0.87 (t, J = 6.8 Hz, 3 H). 13C{1H} NMR (75 MHz, CDCl3): δ = 142.6, 138.1, 128.6, 127.2, 64.6 (m), 35.7, 31.9, 31.6, 29.3, 29.2, 22.7, 14.1.