Synthesis 2020; 52(05): 763-768
DOI: 10.1055/s-0039-1691528
paper
© Georg Thieme Verlag Stuttgart · New York

Direct Oxidative Dearomatization of Indoles with Aromatic Ketones: Rapid Access to 2,2-Disubstituted Indolin-3-ones

Jiarun Liu
,
Jiancheng Huang
,
Kuiyong Jia
,
Tianxing Du
,
Changyin Zhao
,
Rongxiu Zhu
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. of China   Email: rxzhu@sdu.edu.cn   Email: 201990000024@sdu.edu.cn
,
Xigong Liu
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (No. 21801093) and the Natural Science Foundation of Shandong Province (Nos. ZR2017BB006, JQ201721).
Further Information

Publication History

Received: 16 October 2019

Accepted after revision: 16 November 2019

Publication Date:
28 November 2019 (online)


§ These authors contributed equally to this work

Abstract

A metal-free oxidative dearomatization of indoles with aromatic ketones mediated by TEMPO oxoammonium salt is described. The dearomatization proceeds smoothly and displays a broad substrate scope with respect to both indoles and aromatic ketones in the presence of H2SO4, affording the corresponding 2,2-disubstituted indolin-3-ones in good yields.

Supporting Information

 
  • References

    • 1a Lin L.-Z, Shen J.-H, He X, Zhang W.-Y. Acta Chim. Sin. 1988; 3: 258
    • 1b Williams RM, Glinka T, Kwast E, Coffman H, Stille JK. J. Am. Chem. Soc. 1990; 112: 808
    • 1c Wu PL, Hsu YL, Jao CW. J. Nat. Prod. 2006; 69: 1467
    • 1d Liu J.-F, Jiang Z.-Y, Wang R.-R, Zheng Y.-T, Chen J.-J, Zhang XM, Ma YB. Org. Lett. 2007; 9: 4127
    • 1e Kato H, Yoshida T, Tokue T, Nojiri Y, Hirota H, Ohta T, Williams RM, Tsukamoto S. Angew. Chem. Int. Ed. 2007; 46: 2254
    • 1f Tsukamoto S, Umaoka H, Yoshikawa K, Ikeda T, Hirota H. J. Nat. Prod. 2010; 73: 1438
    • 1g Zhang X, Mu T, Zhan F, Ma L, Liang G. Angew. Chem. Int. Ed. 2011; 50: 6164
    • 1h Abe T, Kukita A, Akiyama K, Naito T, Uemura D. Chem. Lett. 2012; 41: 728
    • 1i Zhao B, Hao X.-Y, Zhang J.-X, Liu S, Hao X.-J. Org. Lett. 2013; 15: 528
    • 2a Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2b Arockiam PB, Bruneau C, Dixneuf P. Chem. Rev. 2012; 112: 5879
    • 2c Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
    • 2d Torres-Ochoa RO, Buyck T, Wang Q, Zhu J.-P. Angew. Chem. Int. Ed. 2018; 57: 5679
    • 2e Lauwick H, Sun Y, Akdas-Kilig H, Derien S, Achard M.-J. Chem. Eur J. 2018; 24: 7964
    • 2f Yang L.-C, Tan Z.-Y, Rong Z.-Q, Liu R.-Y, Wang Y.-N, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 7860
    • 3a Ardakani MA, Smalley RK. Tetrahedron Lett. 1979; 20: 4769
    • 3b Ardakani MA, Alkhader MA, Lippiatt JH, Patel DI, Smalley RK, Higson SJ. J. Chem. Soc., Perkin Trans. 1 1986; 1107
    • 3c Wetzel A, Gagosz F. Angew. Chem. Int. Ed. 2011; 50: 7354
    • 3d Goriya Y, Ramana CV. Chem. Commun. 2013; 49: 6376
    • 3e Mothe SR, Novianti ML, Ayers BJ, Chan PW. H. Org. Lett. 2014; 16: 4110
    • 3f Liu RR, Ye SC, Lu CJ, Zhuang GL, Gao JR, Jia YX. Angew. Chem. Int. Ed. 2015; 54: 11205
    • 3g Li YJ, Yan N, Liu CH, Yu Y, Zhao YL. Org. Lett. 2017; 19: 1160
    • 3h Xia Z, Hu J, Gao YQ, Yao Q, Xie W. Chem. Commun. 2017; 53: 7485
    • 3i Fu WQ, Song QL. Org. Lett. 2018; 20: 393
    • 4a Mérour JY, Chichereau L, Finet JP. Tetrahedron Lett. 1992; 33: 3867
    • 4b Rueping M, Raja S, Núñez A. Adv. Synth. Catal. 2011; 353: 563
    • 4c Jin CY, Wang Y, Liu YZ, Shen C, Xu PF. J. Org. Chem. 2012; 77: 11307
    • 4d Parra A, Alfaro R, Marzo L, Moreno-Carrasco A, Luis J, Ruano G, Alemán J. Chem. Commun. 2012; 48: 9759
    • 4e Liu JX, Zhou QQ, Deng JG, Chen YC. Org. Biomol. Chem. 2013; 11: 8175
    • 4f Zhao YL, Wang Y, Cao J, Liang YM, Xu PF. Org. Lett. 2014; 16: 2438
    • 4g Huang JR, Qin L, Zhu YQ, Song Q, Dong L. Chem. Commun. 2015; 51: 2844
    • 4h Dhara K, Mandal T, Das J, Dash J. Angew. Chem. Int. Ed. 2015; 54: 15831
    • 5a Higuchi K, Sato Y, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Org. Lett. 2009; 11: 197
    • 5b Higuchi K, Sato Y, Kojima S, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Tetrahedron Lett. 2010; 66: 1236
  • 6 Suneel Kumar CV, Ramana CV. Org. Lett. 2015; 17: 2870
  • 7 Shao Y, Zeng YM, Ji JY, Sun XQ, Yang H.-T, Miao CB. J. Org. Chem. 2016; 81: 12443
    • 8a Guo C, Schedler M, Daniliuc C.-G, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10232
    • 8b Guo J, Lin Z.-H, Chen K.-B, Xie Y, Chan AS. C, Weng J, Lu G. Org. Chem. Front. 2017; 4: 1400
    • 8c Yarlagadda S, Reddy CR, Ramesh B, Ravikumar G, Sridhar B, Reddy BV. S. Eur. J. Org. Chem. 2018; 1364
    • 9a Li JS, Liu YJ, Zhang GW, Ma JA. Org. Lett. 2017; 19: 6364
    • 9b Li JS, Liu YJ, Li S, Ma JA. Chem. Commun. 2018; 54: 9151
    • 10a Zhang XX, Li P, Lyu C, Yong WX, Li J, Pan XY, Zhu XB, Rao WD. Adv. Synth. Catal. 2017; 359: 4147
    • 10b Li P, Yong WX, Sheng R, Zhu XB, Zhang XX. Adv. Synth. Catal. 2017; 361: 201
    • 11a Zhang X, Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
    • 11b Buller MJ, Cook TG, Kobayashi Y. Heterocycles 2007; 72: 163
    • 11c Zhang C, Li S, Bureš F, Lee R, Ye X, Jiang Z. ACS Catal. 2016; 6: 6853
    • 11d Guchhait SK, Chaudhary V, Rana VA, Priyadarshani G, Kandekar S, Kashyap M. Org. Lett. 2016; 18: 1534
    • 11e Huang H, Cai J, Ji X, Xiao F, Chen Y, Deng G. Angew. Chem. Int. Ed. 2016; 55: 307
    • 11f Jiang X, Zhu B, Lin K, Wang G, Su W, Yu C. Org. Biomol. Chem. 2019; 17: 2199
    • 11g Ding X, Dong C, Guan Z, He Y. Angew. Chem. Int. Ed. 2019; 58: 118
    • 12a Liu X, Yan X, Tang Y, Jiang CS, Yu JH, Wang K, Zhang H. Chem. Commun. 2019; 55: 6535
    • 12b Liu X, Yan X, Yu JH, Tang Y, Wang K, Zhang H. Org. Lett. 2019; 21: 5626
    • 13a Liu X, Sun B, Xie ZY, Qin XJ, Liu L, Lou H. J. Org. Chem. 2013; 78: 3104
    • 13b Liu X, Meng Z, Li C, Lou H, Liu L. Angew. Chem. Int. Ed. 2015; 54: 6012