Synthesis 2020; 52(06): 882-892
DOI: 10.1055/s-0039-1691487
paper
© Georg Thieme Verlag Stuttgart · New York

Suzuki–Miyaura Cross-Couplings under Acidic Conditions

Lucas Pruschinski
,
Ana-Luiza Lücke
,
Tyll Freese
,
Sean-Ray Kahnert
,
Sebastian Mummel
,
Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany   Email: schmidt@ioc.tu-clausthal.de
› Author Affiliations
The Deutsche Forschungsgemeinschaft DFG is gratefully acknowledged for financial support (project SCHM1371/14-1).
Further Information

Publication History

Received: 24 September 2019

Accepted after revision: 31 October 2019

Publication Date:
14 November 2019 (online)


Abstract

Suzuki–Miyaura reactions with Pd(PPh3)4 have been carried out using lithium N-phenylsydnone-4-carboxylate as additive, which gave best yields at pH 5.7 in a mixture of acetic acid, water, and sodium carbonate. Reaction parameters such as the Pd source, the solvent, reaction time and temperature, acid, base and carboxylate have been varied and some representative examples of the Suzuki–Miyaura reaction have been examined.

Supporting Information

 
  • References


    • Recent examples, reviews and applications:
    • 1a Liu R, Zhu G, Ji Y, Zhang G. Eur. J. Org. Chem. 2019; 3217
    • 1b Jo Y.-I, Burke MD, Cheon C.-H. Org. Lett. 2019; 21: 4201
    • 1c Quibell JM, Duan G, Perry GJ. P, Larrosa I. Chem. Commun. 2019; 55: 6445
    • 1d Asako S, Nakajima H, Takai K. Nat. Catal. 2019; 2: 297
    • 1e Gonzalez-Sebastian L, Morales-Morales D. J. Organomet. Chem. 2019; 893: 39
    • 1f Kim S, Kim B, Dogan NA, Yavuz CT. ACS Sustainable Chem. Eng. 2019; 7: 10865
    • 1g Yang X, Kalita SJ, Maheshuni S, Huang Y.-Y. Coord. Chem. Rev. 2019; 392: 35
    • 1h Wu L, Li F, Rao Y, Wen B, Xu L, Zhou M, Tanaka T, Osuka A, Song J. Angew. Chem. Int. Ed. 2019; 58: 8124
    • 1i West MJ, Watson AJ. B. Org. Biomol. Chem. 2019; 17: 5055
    • 2a Bhatthula BK. G, Kanchani JR, Arava VR, Subha MC. S. Tetrahedron 2019; 75: 874
    • 2b Qu J, Helmchen G. Acc. Chem. Res. 2017; 50: 2539
    • 2c Oukoloff K, Chao S, Cieslikiewicz-Bouet M, Mougeot R, Jean L, Renard P.-Y. Eur. J. Org. Chem. 2016; 1337
    • 2d Kim SH, Sperry J. Tetrahedron Lett. 2015; 56: 5914
    • 3a Yajima A, Saitou F, Sekimoto M, Maetoko S, Nukada T, Yabuta G. Tetrahedron 2005; 61: 9164
    • 3b Runguphan W, O’Connor SE. Org. Lett. 2013; 15: 2850
    • 4a Fuwa H. Bull. Chem. Soc. Jpn. 2010; 83: 1401
    • 4b Bonazzi S, Eidam O, Guttinger S, Wach J.-Y, Zemp I, Kutay U, Gademann K. J. Am. Chem. Soc. 2010; 132: 1432
    • 5a Zani L, Dessi A, Franchi D, Calamante M, Reginato G, Mordini A. Coord. Chem. Rev. 2019; 392: 177
    • 5b Pilicode N, Nimith KM, Acharya M, Naik P, Satyanarayan MN, Adhikari VA. J. Photochem. Photobiol., A 2019; 378: 38
    • 5c Potopnyk MA, Volyniuk D, Luboradzki R, Ceborska M, Hladka I, Danyliv Y, Grazulevicius JV. J. Org. Chem. 2019; 84: 5614
    • 5d Hu L, Liang J, Zhong W, Guo T, Zhong Z, Peng F, Fan B, Ying L, Cao Y. J. Mater. Chem. C 2019; 7: 5630
    • 6a Hu X, Wan B, Liu Y, Shen J, Franzblau SG, Zhang T, Ding K, Lu X. ACS Med. Chem. Lett. 2019; 10: 295
    • 6b Bhujabal YB, Vadagaonkar KS, Kapdi AR. Asian J. Org. Chem. 2019; 8: 289
    • 7a Scattolin T, Canovese L, Visentin F, Paganelli S, Canton P, Demitri N. Appl. Organomet. Chem. 2018; 32: 4034
    • 7b Zhang Z, Hu P, Li X, Zhan H, Cheng Y. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 1457
    • 8a Kashihara M, Zhong R.-L, Semba K, Sakaki S, Nakao Y. Chem. Commun. 2019; 55: 9291
    • 8b Reddy SM, Reddy BN, Motakatla VK. R, Gokanapalli A, Pathak M, Reddy PV. G. Synth. Commun. 2019; 49: 1987
    • 8c Kaloglu N, Ozdemir I. Tetrahedron 2019; 75: 2306
    • 8d Schroeter F, Soellner J, Strassner T. Organometallics 2018; 37: 4267
    • 8e Chetcuti MJ. N-Heterocyclic Carbenes in Catalytic Organic Synthesis Volume 1, In Science of Synthesis . Nolan SP, Cazin CS. J. Georg Thieme; Stuttgart: 2016: 79
    • 9a Scaggs WR, Snaddon TN. Chem. Eur. J. 2018; 24: 14378
    • 9b Hoshi T, Shishido Y, Suzuki A, Sasaki Y, Hagiwara H, Suzuki T. Chem. Lett. 2018; 47: 780
    • 9c Meng GR, Shi SC, Szostak M. ACS Catal. 2016; 6: 7335
    • 9d Seth K, Purohit P, Chakraborti AK. Org. Lett. 2014; 16: 2334
    • 9e Dickschat AT, Surmiak S, Studer A. Synlett 2013; 24: 1523
    • 9f Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912 ; Angew. Chem. 2016, 128, 15134
    • 10a Schmidt A, Wiechmann S, Otto CF. Adv. Heterocycl. Chem. 2016; 119: 143
    • 10b Zhang J, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Org. Biomol. Chem. 2018; 16: 6801
    • 10c Smeyanov A, Adams J, Hübner EG, Schmidt A. Tetrahedron 2017; 73: 3106
    • 10d Liu M, Nieger M, Hübner E, Schmidt A. Chem. Eur. J. 2016; 5416
    • 11a Lücke A.-L, Wiechmann S, Freese T, Schmidt A. Synlett 2017; 28: 1990
    • 11b Lücke A.-L, Wiechmann S, Freese T, Guan Z, Schmidt A. Z. Naturforsch., B 2016; 71: 643
    • 12a Ramsden CA. Tetrahedron 2013; 69: 4146
    • 12b Ramsden CA, Oziminski WP. Tetrahedron 2014; 70: 7158
    • 12c Ollis WD, Ramsden CA. Adv. Heterocycl. Chem. 1976; 19: 3
    • 13a Albota F, Stanescu MD. Rev. Roum. Chim. 2017; 62: 711
    • 13b Browne DL, Harrity JP. Tetrahedron 2010; 66: 553
    • 13c Gilchrist TL. Science of Synthesis 2003; 13: 109
    • 14a Freese T, Nieger M, Namyslo JC, Schmidt A. Tetrahedron Lett. 2019; 60: 1272
    • 14b Freese T, Namyslo JC, Nieger M, Schmidt A. RSC Adv. 2019; 9: 4781
    • 14c Freese T, Lücke A.-L, Namyslo JC, Nieger M, Schmidt A. Eur. J. Org. Chem. 2018; 1646
    • 14d Freese T, Lücke A.-L, Schmidt CA. S, Polamo M, Nieger M, Namyslo JC, Schmidt A. Tetrahedron 2017; 73: 5350
    • 14e Wiechmann S, Freese T, Drafz MH. H, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Chem. Commun. 2014; 50: 11822
    • 15a Lücke A.-L, Wiechmann S, Freese T, Nieger M, Földes T, Pápai I, Gjikaj M, Adam A, Schmidt A. Tetrahedron 2018; 74: 2092
    • 15b Kalinin VN, She FM, Khandozhko VN, Petrovskii PV. Russ. Chem. Bull. 2001; 50: 525
  • 16 Yoo KS, Yoon CH, Jung KW. J. Am. Chem. Soc. 2006; 128: 16384
  • 17 Xiao J, Lu Z, Li Z, Li Y. Appl. Organomet. Chem. 2015; 29: 646
  • 18 Bjerglund KM, Skrydstrup T, Molander GA. Org. Lett. 2014; 16: 1888
  • 19 Brookins RN, Schanze KS, Reynolds JR. Macromolecules 2007; 40: 3524
  • 20 Casey ML, Kemp DS, Paul KG, Cox DD. J. Org. Chem. 1973; 38: 2294
    • 21a D’Arrigo P, Cerioli DA. L, Moscatelli D, Servi S, Viani F, Tessaro D. Tetrahedron: Asymmetry 2011; 22: 851
    • 21b Goodman M, Stueben KC. J. Org. Chem. 1962; 27: 3409
    • 21c McDermott JR, Benoiton NL. Can. J. Chem. 1973; 51: 2555
  • 22 Qi X, Jiang L.-B, Li H.-P, Wu X.-F. Chem. Eur. J. 2015; 21: 17650
    • 23a Fèvre M, Pinaud J, Leteneur A, Gnanou Y, Vignolle J, Taton D, Miqueu K, Sotiropoulos J.-M. J. Am. Chem. Soc. 2012; 134: 6776
    • 23b Sauvage X, Demonceau A, Delaude L. Adv. Synth. Catal. 2009; 351: 2031
    • 23c Kolychev EL, Bannenberg T, Freytag M, Daniliuc CG, Jones PG, Tamm M. Chem. Eur. J. 2012; 18: 16938
    • 23d Bissinger P, Braunschweig H, Kupfer T, Radacki K. Organometallics 2010; 29: 3987
    • 23e Schmidt A, Beutler A, Albrecht M, Ramírez FJ. Org. Biomol. Chem. 2008; 6: 287
    • 23f Katritzky AR, Faid-Allah HM. Synthesis 1983; 149
  • 24 Mpungose PP, Sehloko NI, Maguire GE. M, Friedrich HB. New J. Chem. 2017; 41: 13560
  • 25 Widdowson DA, Wilhelm R. Chem. Commun. 2003; 5: 578
  • 26 Forrest J. J. Chem. Soc. 1960; 594
  • 27 Susanto W, Chu C.-Y, Ang WJ, Chou T.-C, Lo L.-C, Lam Y. J. Org. Chem. 2012; 77: 2729
    • 28a Tawari N, Lele A, Khambete M, Degani M. Int. J. Pharm. Pharm. Sci. 2014; 6: 149
    • 28b Nair PC, Sobhia ME. J. Mol. Graphics Modell. 2008; 26: 916
    • 28c Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C. J. Med. Chem. 1991; 34: 786
  • 29 Zhou X, Guo X, Jian F, Wei G. ACS Omega 2018; 3: 4418
  • 30 Ostrowska S, Kubicki M, Pietraszuk C. Inorg. Chim. Acta 2018; 482: 317
  • 31 Gou G, Niu Z, Han W. Mater. Chem. Phys. 2019; 230: 145
    • 32a Ho CC, Olding A, Smith JA, Bissember AC. Organometallics 2018; 37: 1745
    • 32b Mastalir M, Stoeger B, Pittenauer E, Allmaier G, Kirchner K. Org. Lett. 2016; 18: 3186
    • 32c Pascanu V, Yao Q, Bermejo Gomez A, Gustafsson M, Yun Y, Wan W, Samain L, Zou X, Martin-Matute B. Chem. Eur. J. 2013; 19: 17483
    • 32d Wilson KL, Murray J, Jamieson C, Watson AJ. B. Synlett 2018; 29: 650
    • 32e Ikawa T, Saito K, Akai S. Synlett 2012; 23: 2241
  • 33 Lohse O, Thevenin P, Waldvogel E. Synlett 1999; 45
  • 34 Fu Y.-F, Song K.-P, Zou Z.-J, Li M.-Q. Transition Met. Chem. 2018; 43: 665
  • 35 Chen J, Zhang J, Zhu D, Li T. Appl. Organomet. Chem. 2018; 32: e3996
  • 36 Hsu Y.-C, Wang VC.-C, Au-Yeung K.-C, Tsai C.-Y, Chang C.-C, Lin B.-C, Chan Y.-T, Hsu C.-P, Yap GP. A, Jurca T, Ong T.-G. Angew. Chem. Int. Ed. 2018; 57: 4622
  • 37 Engelhardt H, Bader G, Boehmelt G, Brueckner R, Gerstberger T, Impagnatiello M, Kuhn D, Schaaf O, Stadtmueller H, Waizenegger I, Zoephel A. WO2008/3766 A2, 2008
  • 38 Wu G.-J, Han F.-S, Zhao Y.-LG. RSC Adv. 2015; 5: 69776
  • 39 Frotscher M, Ziegler E, Marchais-Oberwinkler S, Kruchten P, Neugebauer A, Fetzer L, Scherer C, Müller-Vieira U, Messinger J, Thole H, Hartmann RW. J. Med. Chem. 2008; 51: 2158
  • 40 Yabe Y, Maegawa T, Monguchi Y, Sajiki H. Tetrahedron 2010; 66: 8654
  • 41 Lücke A.-L, Wiechmann S, Freese T, Guan Z, Schmidt A. Z. Naturforsch., B 2016; 71: 643
  • 42 Fairlamb IJ. S, Kapdi AR, Lee AF. Org. Lett. 2004; 6: 4435
  • 43 Kehlbeck J, Dimise E, Sparks S, Ferrara S, Tanski J, Anderson C. Synthesis 2007; 1979
  • 44 Maity M, Maitra U. J. Mater. Chem. A 2014; 2: 18952
  • 45 Hachiya S, Asai K, Konishi G.-I. Tetrahedron Lett. 2013; 54: 1839
  • 46 Ernst JB, Rakers L, Glorius F. Synthesis 2017; 49: 260
  • 47 Serrano L, Pérez J, García L, Sánchez G, García J, Lozano P, Zende V, Kapdi A. Organometallics 2015; 34: 522
  • 48 Yang H, Zang L, Jiao L. Chem. Eur. J. 2017; 23: 65
  • 49 Liu C, Ni Q, Bao F, Qiu J. Green Chem. 2011; 13: 1260