Synthesis 2020; 52(13): 1927-1933
DOI: 10.1055/s-0039-1690854
paper
© Georg Thieme Verlag Stuttgart · New York

Three-Component Synthesis of 2-Alkylthiobenzoazoles in Aqueous Media

Jin-Quan Chen
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Jia Guo
b   Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
c   Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
,
Zhi-Bing Dong
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
b   Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
c   Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
d   Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. of China
› Author Affiliations
The financial support from Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science & Technology (2019-20KZ01), Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University (KLSAOFM1810), Science and Technology Department of Hubei Province (2019CFB596), Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials (WKDM202003) are all greatly appreciated. J.-Q.C. thanks the support of Postgraduate Innovation Foundation from Wuhan Institute of Technology (CX2019170).
Further Information

Publication History

Received: 19 December 2019

Accepted after revision: 14 February 2020

Publication Date:
16 March 2020 (online)


Abstract

A highly efficient three-component protocol for the synthesis of the 2-alkylthiobenzoazoles is described. Tetramethylthiuram disulfide (TMTD) cyclized with o-aminothiophenols, generating the intermediate 2-mercaptobenzothiazoles, and the successive C–S coupling with halogenated alkanes afforded a series of 2-alkyl-substituted thiobenzothiazoles smoothly in a one-pot process. This procedure could also be utilized for the preparation of 2-alkyl-substituted thiobenzoxazoles and 2-alkyl-substituted thiobenzimidazoles. Inexpensive and easily available starting materials, metal catalyst-free, broad substrate scope, and water as solvent are the features of this protocol.

Supporting Information

 
  • References

    • 1a Yu YF, Li ZN, Jiang L. Phosphorus, Sulfur Silicon Relat. Elem. 2012; 187: 632
    • 1b Liang GG, Liu MC, Chen JX, Ding JC, Gao WX, Wu HY. Chin. J. Chem. 2012; 30: 1611
    • 1c Dan WX, Deng HJ, Chen JX, Liu MC, Ding JC, Wu HY. Tetrahedron 2010; 66: 7384
    • 1d Guo WX, Chen JX, Wu DZ, Ding JC, Wu HY. Tetrahedron 2009; 65: 5240
    • 1e Liu MC, Lin SM, Ding JC, Gao WX, Wu HY, Chen JX. Tetrahedron 2013; 69: 2283
  • 2 He MC, Yan ZH, Zhu FY, Lin S. J. Org. Chem. 2018; 83: 15438
    • 3a Deligeorgiev T, Kaloyanova S, Lesev N, Vaquero JJ. Ultrason. Sonochem. 2010; 17: 783
    • 3b Ranjit S, Lee R, Heryadi D, Shen C, Wu JE, Zhang PF, Huang KW, Liu XG. J. Org. Chem. 2011; 76: 8999
    • 3c Dai C, Xu ZQ, Huang F, Yu ZK, Gao YF. J. Org. Chem. 2012; 77: 4414
    • 3d Yang XL, Xu YL, Chen JX, Ding JC, Wu HY, Su WK. J. Chem. Res. 2009; 11: 682
    • 4a Suresh CH, Rao JV, Jayaveera KN, Subudhi SK. Int. Res. J. Pharm. 2011; 2: 257
    • 4b Singh M, Singh SK, Gangwar M, Nath G, Singh SK. RSC Adv. 2014; 4: 19013
    • 4c Rao AJ, Rao PV, Rao VK, Mohan C, Raju CN, Reddy CS. Bull. Korean Chem. Soc. 2010; 31: 1863
    • 4d Singh SP, Segal S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1988; 27: 941
    • 4e Palmer PJ, Trigg RB, Warrington JV. J. Med. Chem. 1971; 14: 248
    • 4f Pattan SR, Suresh C, Pujar VD, Reddy VV. K, Rasal VP, Koti BC. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2005; 44: 2404
    • 4g Huang ST, Hsei IJ, Chen C. Bioorg. Med. Chem. 2006; 14: 6106
    • 4h Akhtar T, Hameed S, Al-Masoudi NA, Loddo R, Colla P. Acta Pharm. 2008; 58: 135
    • 4i Yang XL, Xu CM, Lin SM, Chen JX, Ding JC, Wu HY, Su WK. J. Braz. Chem. Soc. 2010; 21: 37
    • 4j Hu K, Qi LJ, Yu SL, Cheng TX, Wang XD, Li ZJ, Xia YZ, Chen JX, Wu HY. Green Chem. 2017; 19: 1740
    • 4k Yu SL, Hu K, Gong JL, Qi LJ, Zhu JH, Zhang YT, Cheng TX, Chen JX. Org. Biomol. Chem. 2017; 15: 4300
    • 5a Ali M, Ali S, Khan M, Rashid U, Ahmad M, Khan A, Al-Harrasi A, Ullah F, Latif A. Bioorg. Chem. 2018; 80: 472
    • 5b Shi L, Liu XQ, Zhang H, Jiang YW, Ma D. J. Org. Chem. 2011; 76: 4200
  • 6 Zhang HF, Liu DM, Kang TT, Wang Y, Zhang XX, Zhu XB. Chin. J. Org. Chem. 2016; 36: 1104
  • 7 Zhang TH, He HX, Du JL, He ZJ, Yao S. Molecules 2018; 23: 2011
  • 8 Gao MC, Wang M, Zheng QH. Appl. Radiat. Isotopes 2008; 66: 506
  • 9 Dalal DS, Pawar NS, Mahulikar PP. Org. Prep. Proced. Int. 2005; 37: 539
  • 10 Li YW, Gu GB, Liu HY, Sung HY, Williams LD, Chang CK. Molecules 2005; 10: 912
    • 11a Sih JC, Graber DR. J. Org. Chem. 1983; 48: 3842
    • 11b Klimesova V, Koci J, Pour M, Stachel J, Waisser K, Kaustova J. Eur. J. Med. Chem. 2002; 37: 409
    • 11c Hu Y, Chen ZC, Le ZG, Zheng QG. Synth. Commun. 2004; 34: 2039
    • 11d Mésangeau C, Narayanan S, Green AM, Shaikh J, Kaushal N, Viard E, Xu YT, Fishback JA, Poupaert JH, Matsumoto RR, McCurdy CR. J. Med. Chem. 2008; 51: 1482
    • 12a Rosario AR, Casola KK, Oliveira CE. S, Zeni G. Adv. Synth. Catal. 2013; 355: 2960
    • 12b Rafique J, Saba S, Frizon TE. A, Braga AL. ChemistrySelect 2018; 3: 12387
    • 12c Zhou AX, Liu XY, Yang K, Zhao SC, Liang YM. Org. Biomol. Chem. 2011; 9: 5456
    • 13a Bunce RA. Tetrahedron 1995; 51: 13103
    • 13b Winkler JD. Chem. Rev. 1996; 96: 167
    • 13c Mayer SF, Kroutil W, Faber K. Chem. Soc. Rev. 2001; 30: 332
    • 13d Parsons PJ, Penkett CS, Shell AJ. Chem. Rev. 1996; 96: 195
    • 13e Eilbracht P, Bärfacker L, Buss C, Hollmann C, Kitsos-Rzychon BE, Kranemann CL, Rische T, Roggenbuck R, Schmidt A. Chem. Rev. 1999; 99: 3329
    • 13f Clark AJ. Chem. Soc. Rev. 2002; 31: 1
    • 13g Denmark SE, Thorarensen A. Chem. Rev. 1996; 96: 137
  • 14 Murru S, Ghosh H, Sahoo SK, Patel BK. Org. Lett. 2009; 11: 4254
  • 15 Shi L, Liu X, Zhang H, Jiang Y, Ma D. J. Org. Chem. 2011; 76: 4200
  • 16 Enders D, Rembiak A, Liebich JX. Synthesis 2011; 281
    • 17a Zeng MT, Xu W, Liu M, Liu X, Chang CZ, Zhu H, Dong ZB. Synth. Commun. 2017; 47: 1434
    • 17b Dong ZB, Wang M, Zhu H, Liu X, Chang CZ. Synthesis 2017; 49: 5258
  • 18 Liu X, Liu M, Xu W, Zeng MT, Zhu H, Chang CZ, Dong ZB. Green Chem. 2017; 19: 5591
    • 19a Cao Q, Peng YH, Cheng Y, Dong ZB. Synthesis 2018; 50: 1527
    • 19b Zhang SB, Liu X, Gao MY, Dong ZB. J. Org. Chem. 2018; 83: 14933
    • 19c Dong ZB, Liu X, Bolm C. Org. Lett. 2017; 19: 5916
    • 19d Xu W, Zeng MT, Liu M, Liu SS, Li YS, Dong ZB. Synthesis 2017; 49: 3084
    • 19e Zeng MT, Xu W, Liu X, Chang CZ, Zhu H, Dong ZB. Eur. J. Org. Chem. 2017; 6060
    • 19f Liu M, Zeng MT, Xu W, Wu L, Dong ZB. Tetrahedron Lett. 2017; 58: 4352
  • 20 CCDC 1971891 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.