Synlett 2020; 31(10): 933-937
DOI: 10.1055/s-0039-1690811
synpacts
© Georg Thieme Verlag Stuttgart · New York

A Frustrated Lewis Pair Solution to a Frustrating Problem: Mono-Selective Functionalization of C–F Bonds in Di- and Trifluoromethyl Groups

Richa Gupta
,
Amit K. Jaiswal
,
Dipendu Mandal
,
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore   Email: rowan.young@nus.edu.sg
› Author Affiliations
We thank the Singapore Ministry of Education (R-143-000-A05-112) and the Singapore Agency of Science, Technology and Research (A*STAR) (R-143-000-B09-305) for funding.
Further Information

Publication History

Received: 11 December 2019

Accepted after revision: 15 January 2020

Publication Date:
28 January 2020 (online)


Abstract

Polyfluoromethyl groups generally suffer from over-reaction, where multiple C–F bonds are uncontrollably functionalized. The use of a frustrated Lewis pair (FLP)-mediated C–F bond activation permits selective monodefluorination through base capture of intermediate fluorocarbocations. FLP-mediated C–F bond activation can be applied to aromatic, heteroaromatic, or nonaromatic difluoro and trifluoromethyl groups to generate selectively fluoride-substituted phosphonium and pyridinium salts. These salts can be further functionalized by Wittig coupling, nucleophilic substitution, photoredox alkylation, nucleophilic transfer, or hydrogenation reactions to install a range of functional groups into the activated C–F position.

1 Introduction

2 Frustrated Lewis Pair C–F Activation

3 Conclusion

 
  • References

    • 1a Wu J. Tetrahedron Lett. 2014; 55: 4289
    • 1b Fluorocarbon and Related Chemistry . Vol. 1,. Banks RE, Barlow MG. Chemical Society; London: 1971
    • 1c Ebnesajjad S. Introduction to Fluoropolymers: Materials, Technology and Applications. William Andrews; Orlando: 2013. Chap. 1, 1
    • 2a Rozatian N, Ashworth IW, Sandford G, Hodgson DR. W. Chem. Sci. 2018; 9: 8692
    • 2b Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
    • 3a Feng Z, Min Q.-Q, Fu X.-P, An L, Zhang X. Nat. Chem. 2017; 9: 918
    • 3b Xu C, Guo W, He X, Guo Y.-L, Zhang X.-Y, Zhang X. Nat. Commun. 2018; 9: 1170
    • 3c Feng Z, Xiao Y.-L, Zhang X. Acc. Chem. Res. 2018; 51: 2264
    • 5a Saboureau C, Troupel M, Sibille S, Périchon J. J. Chem. Soc., Chem. Commun. 1989; 1138
    • 5b Chen K, Berg N, Gschwind R, König B. J. Am. Chem. Soc. 2017; 139: 18444
    • 5c Wang H, Jui NT. J. Am. Chem. Soc. 2018; 140: 163
    • 5d Vogt DB, Seath CP, Wang H, Jui NT. J. Am. Chem. Soc. 2019; 141: 13203
    • 5e Luo C, Bandar JS. J. Am. Chem. Soc. 2019; 141: 14120
  • 6 Yoshida S, Shimimori K, Kim Y, Hosoya T. Angew. Chem. Int. Ed. 2016; 55: 10406
    • 7a Bégué J.-P, Bonnet-Delpon D, Rock MH. Synlett 1995; 659
    • 7b Bégué J.-P, Bonnet-Delpon D, Rock MH. Tetrahedron Lett. 1995; 36: 5003
    • 7c Bégué J.-P, Bonnet-Delpon D, Rock MH. J. Chem. Soc., Perkin Trans. 1 1996; 1409
    • 7d Ichikawa J, Fukui H, Ishibashi Y. J. Org. Chem. 2003; 68: 7800
    • 7e Fujita M, Obayashi M, Hiyama T. Tetrahedron 1988; 44: 4135
    • 7f Cunico RF, Motta AR. Org. Lett. 2005; 7: 771
    • 7g Yang J, Mao A, Yue Z, Zhu W, Luo X, Zhu C, Xiao Y, Zhang J. Chem. Commun. 2015; 51: 8326
    • 7h Ichikawa J. Yuki Gosei Kagaku Kyokaishi 2010; 68: 1175
    • 7i Fuchibe K, Takahashi M, Ichikawa J. Angew. Chem. Int. Ed. 2012; 51: 12059
    • 7j Fujita T, Takazawa M, Sugiyama K, Suzuki N, Ichikawa J. Org. Lett. 2017; 19: 588
    • 7k Fuchibe K, Hatta H, Oh K, Oki R, Ichikawa J. Angew. Chem. Int. Ed. 2017; 56: 5890
    • 7l Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
    • 7m Hamela J.-D, Paquin J.-F. Chem. Commun. 2018; 54: 10224
    • 7n Shen Q, Huang Y.-G, Liu C, Xiao J.-X, Chen Q.-Y, Guo Y. J. Fluorine Chem. 2015; 179: 14
    • 8a Dang H, Whittaker AM, Lalic G. Chem. Sci. 2016; 7: 505
    • 8b Mallov I, Ruddy AJ, Zhu H, Grimme S, Stephan DW. Chem. Eur. J. 2017; 23: 17692
    • 8c Munoz SB, Ni C, Zhang Z, Wang F, Shao N, Mathew T, Olah GA, Prakash GK. S. Eur. J. Org. Chem. 2017; 2322
    • 10a Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
    • 10b Stephan DW. Acc. Chem. Res. 2015; 48: 306
    • 10c Jupp AR, Stephan DW. Trends Chem. 2019; 1: 35
    • 10d Welch GC, Juan RR. S, Masuda JD, Stephan DW. Science 2006; 314: 1124
    • 10e Dureen MA, Stephan DW. J. Am. Chem. Soc. 2009; 131: 8396
    • 10f Ménard G, Stephan DW. J. Am. Chem. Soc. 2010; 132: 1796
  • 11 Caputo CB, Stephan DW. Organometallics 2012; 31: 27
    • 12a Vedejs E, Peterson MJ. Top. Stereochem. 1994; 21: 1
    • 12b Appel M, Blaurock S, Berger S. Eur. J. Org. Chem. 2002; 1143
    • 13a Hara S. Top. Curr. Chem. 2012; 327: 59
    • 13b Landelle G, Bergeron M, Turcotte-Savarda M.-O, Paquin J.-F. Chem. Soc. Rev. 2011; 40: 2867
    • 13c Pfund E, Lequeux T, Gueyrard D. Synthesis 2015; 47: 1534
    • 13d Drouin M, Hamel J.-D, Paquin J.-F. Synthesis 2018; 50: 881
    • 14a Welch GC, Stephan DW. J. Am. Chem. Soc. 2007; 129: 1880
    • 14b Ménard G, Gilbert TM, Hatnean JA, Kraft A, Krossing I, Stephan DW. Organometallics 2013; 32: 4416
    • 15a Feng S, Roof GR, Chen EY.-X. Organometallics 2002; 21: 832
    • 15b Chen J, Chen EY.-X. Dalton Trans. 2016; 45: 6105
  • 16 Jaiswal AK, Prasad PK, Young RD. Chem. Eur. J. 2019; 25: 6290
  • 17 Togni A, Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM. Angew. Chem. Int. Ed. 2019; in press; DOI: DOI: 10.1002/anie.201911660.
    • 18a Deng Z, Lin J.-H, Xiao J.-C. Nat. Commun. 2016; 7: 10337
    • 18b Deng Z, Lin J.-H, Cai J, Xiao J.-C. Org. Lett. 2016; 18: 3206
    • 18c Lin Q.-Y, Xu X.-H, Zhang K, Qing F.-L. Angew. Chem. Int. Ed. 2016; 55: 1479