Synthesis, Table of Contents Synthesis 2020; 52(07): 1047-1059DOI: 10.1055/s-0039-1690751 paper © Georg Thieme Verlag Stuttgart · New York Enantioselective N-Alkylation of Nitroindoles under Phase-Transfer Catalysis Dmitri Trubitsõn a Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia Email: tonis.kanger@taltech.ee , Jevgenija Martõnova a Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia Email: tonis.kanger@taltech.ee , Kristin Erkman a Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia Email: tonis.kanger@taltech.ee , Andrus Metsala a Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia Email: tonis.kanger@taltech.ee , Jaan Saame b Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia , Kristjan Kõster b Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia , Ivar Järving a Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia Email: tonis.kanger@taltech.ee , Ivo Leito b Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia , Tõnis Kanger ∗ a Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia Email: tonis.kanger@taltech.ee › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract An asymmetric phase-transfer-catalyzed N-alkylation of substituted indoles with various Michael acceptors was studied. Acidities of nitroindoles were determined in acetonitrile by UV-Vis spectrophotometric titration. There was essentially no correlation between acidity and reactivity in the aza-Michael reaction. The position of the nitro group on the indole ring was essential to control the stereoselectivity of the reaction. Michael adducts were obtained in high yields and moderate enantioselectivities in the reaction between 4-nitroindole and various Michael acceptors in the presence of cinchona alkaloid based phase-transfer catalysts. In addition to outlining the scope and limitations of the method, the geometries of the transition states of the reaction were calculated. Key words Key wordsasymmetric catalysis - heterocycles - Michael addition - organocatalysis - phase-transfer catalysis Full Text References References 1 For a recent review, see: Ciulla MG, Kumar K. Tetrahedron Lett. 2018; 59: 3223 2 Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845 For reviews of pharmaceutically active indole derivatives, see: 3a Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489 3b Sravanthi TV, Manju SL. Eur. J. Pharm. Sci. 2016; 91: 1 3c Singh TP, Singh OM. Mini-Rev. Med. Chem. 2018; 18: 9 For reviews, see: 4a Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608 4b Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742 4c Chen J.-B, Jia Y.-X. Org. Biomol. Chem. 2017; 15: 3550 5a Fan Y, Kass SR. J. Org. Chem. 2017; 82: 13288 5b Liu L, Ma H, Xiao Y, Du F, Qin Z, Li N, Fu B. Chem. Commun. 2012; 48: 9281 5c Wu K, Jiang Y.-J, Fan Y.-S, Sha D, Zhang S. Chem. Eur. J. 2013; 19: 474 6a Zhou Y, Li C, Yuan X, Zhang F, Liu X, Liu P. Org. Biomol. Chem. 2019; 17: 3343 6b Chaudhary B, Diwaker M, Sharma S. Org. Chem. Front. 2018; 5: 3133 6c Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403 7a Trost BM, Osipov M, Dong G. J. Am. Chem. Soc. 2010; 132: 15800 7b Sevov CS, Zhou JS, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 3200 7c Trost BM, Gnanamani E, Hung C.-I. Angew. Chem. Int. Ed. 2017; 56: 10451 7d Ye Y, Kim S.-T, Jeong J, Baik M.-H, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 3901 8a Zhang L, Wu B, Chen Z, Hu J, Zeng X, Zhong G. Chem. Commun. 2018; 54: 9230 8b Cai Y, Gu Q, You S.-L. Org. Biomol. Chem. 2018; 16: 6146 8c Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 4583 8d Cai Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666 9a Bandini M, Eichholzer A, Tragni M, Umani-Ronchi A. Angew. Chem. Int. Ed. 2008; 47: 3238 9b Bandini M, Bottoni A, Eichholzer A, Miscione GP, Stenta M. Chem. Eur. J. 2010; 16: 12462 10 Hong L, Sun W, Liu C, Wang L, Wang R. Chem. Eur. J. 2010; 16: 440 For our previous articles on aza-Michael reactions, see: 11a Žari S, Kudrjashova M, Pehk T, Lopp M, Kanger T. Org. Lett. 2014; 16: 1740 11b Metsala A, Žari S, Kanger T. ChemCatChem 2016; 8: 2961 11c Žari S, Metsala A, Kudrjashova M, Kaabel S, Järving I, Kanger T. Synthesis 2015; 47: 875 11d Kriis K, Melnik T, Lips K, Juhanson I, Kaabel S, Järving I, Kanger T. Synthesis 2017; 49: 604 12 Yang J, Li T, Zhou H, Li N, Xie D, Li Z. Synlett 2017; 28: 1227 13 For PTC with hydrogen bond donors, see: Wang H. Catalysts 2019; 9 14 Gomez-Bengoa E, Linden A, López R, Múgica-Mendiola I, Oiarbide M, Palomo C. J. Am. Chem. Soc. 2008; 130: 7955 15 Kütt A, Leito I, Kaljurand I, Sooväli L, Vlasov VM, Yagupolskii LM, Koppel IA. J. Org. Chem. 2006; 71: 2829 16 Raamat E, Kaupmees K, Ovsjannikov G, Trummal A, Kütt A, Saame J, Koppel I, Kaljurand I, Lipping L, Rodima T, Pihl V, Koppel IA, Leito I. J. Phys. Org. Chem. 2013; 26: 162 17 Sasson Y, Bilman N. J. Chem. Soc., Perkin Trans. 2 1989; 2029 18 Denmark SE, Weintraub RC. Heterocycles 2011; 82: 1527 19 Nicolaou KC, Liu G, Beabout K, McCurry MD, Shamoo Y. J. Am. Chem. Soc. 2017; 139: 3736 20 Bernal P, Fernández R, Lassaletta JM. Chem. Eur. J. 2010; 16: 7714 21 Wang X, Lv J, Liu L, Wang Y, Wu Y. J. Mol. Catal. A: Chem. 2007; 276: 102 22 He Z, Yang X, Jiang W. Org. Lett. 2015; 17: 3880 23 Reitel K, Kriis K, Järving I, Kanger T. Chem. Heterocycl. Compd. 2018; 54: 929 24 Pelkey ET, Gribble GW. Tetrahedron Lett. 1997; 38: 5603 25 Cheng Q, Zhang F, Guo Y.-L, You S.-L. Angew. Chem. Int. Ed. 2018; 57: 2134 26a Therkelsen FD, Hansen A.-L, Pedersen EB, Nielsen C. Org. Biomol. Chem. 2003; 1: 2908 26b Chen S.-j, Lu P.-G, Cai C. RSC Adv. 2015; 5: 13208 27 Oare DA, Henderson MA, Sanner MA, Heathcock CH. J. Org. Chem. 1990; 55: 132 28 Manjolinho F, Grünberg MF, Rodríguez N, Gooßen LJ. Eur. J. Org. Chem. 2012; 4680 29 Khopade TM, Warghude PK, Mete TB, Bhat RG. Tetrahedron Lett. 2019; 60: 197 30 Liu D.-N, Tian S.-K. Chem. Eur. J. 2009; 15: 4538 31 Berti F, Bincoletto S, Donati I, Fontanive G, Fregonesea M, Benedetti F. Org. Biomol. Chem. 2011; 9: 1987 32 Al-Masum M, Liu K.-Y. Tetrahedron Lett. 2011; 52: 5090 33 Pan G.-F, Zhu X.-Q, Guo R.-L, Gao Y.-R, Wang Y.-Q. Adv. Synth. Catal. 2018; 360: 4774 34 Bentley SC, Davies SG, Lee JA, Roberts PM, Thomson JE. Org. Lett. 2011; 13: 2544 Supplementary Material Supplementary Material Supporting Information