Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(04): 609-618
DOI: 10.1055/s-0039-1690746
DOI: 10.1055/s-0039-1690746
paper
Halogen-Radical-Promoted Dearomative Aza-Spirocyclization of Alkynylimines: An Efficient Approach to 3-Halo-Spirocyclohexadienones
Authors
This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2018BB029, No. ZR2019PB004) and National Natural Science Foundation of China (21772067).
Further Information
Publication History
Received: 21 September 2019
Accepted after revision: 31 October 2019
Publication Date:
13 November 2019 (online)

Abstract
A novel halogen-radical-promoted dearomative aza-spirocyclization of alkynylimines for the synthesis of 3-halo-spirocyclohexadienones is described. In this process, it is believed that a radical addition, 5-exo-trig cyclization, and dearomative aza-spirocyclization are involved. Easily available starting materials, mild conditions, and a wide substrate scope make this approach potentially useful.
Key words
halogen radical - dearomative aza-spirocyclization - alkynylimine - 3-halo-spirocyclohexadienone - 5-exo-trig cyclizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690746.
- Supporting Information (PDF)
-
References
- 1a Müller G, Berkenbosch T, Benningshof JC. J, Stumpfe D, Bajorath J. Chem. Eur. J. 2017; 23: 703
- 1b Koswatta PB, Das J, Yousufuddin M, Lovely CJ. Eur. J. Org. Chem. 2015; 2603
- 1c Ball-Jones NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
- 1d Marson C. Chem. Soc. Rev. 2011; 40: 5514
- 1e Gravel E, Poupon E. Nat. Prod. Rep. 2010; 27: 32
- 2a Jia M, You S. Chem. Commun. 2012; 48: 6363
- 2b Zhuo C, Zhang W, You S. Angew. Chem. Int. Ed. 2012; 51: 12662
- 2c Barradas S, Hernández-Torres G, Urbano A, Carreño MC. Org. Lett. 2012; 14: 5952
- 2d Roche ST, Porco JA. Angew. Chem. Int. Ed. 2011; 50: 4068
- 3a Huang M, Hao W, Li G, Tu S, Jiang B. Chem. Commun. 2018; 54: 10791
- 3b Huang M, Hao W, Jiang B. Chem. Asian J. 2018; 13: 2958
- 3c Reddy CR, Prajapti SK, Warudikar K, Ranjan R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130
- 3d Wu W, Zhang L, You S. Chem. Soc. Rev. 2016; 45: 1570
- 3e D’yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775
- 3f Rios R. Chem. Soc. Rev. 2012; 41: 1060
- 4a Chabaud L, Hromjakova T, Rambla M, Retailleau P, Guillou C. Chem. Commun. 2013; 49: 11542
- 4b Liang H, Ciufolini MA. Chem. Eur. J. 2010; 16: 13262
- 4c Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
- 5a Nemoto T, Zhao Z, Yokosaka T, Suzuki Y, Hamada RW. Y. Angew. Chem. Int. Ed. 2013; 52: 2217
- 5b Unsworth WP, Cuthbertson JD, Taylor RJ. K. Org. Lett. 2013; 15: 3306
- 5c Tnay YL, Chen C, Chua YY, Zhang L, Chiba S. Org. Lett. 2012; 14: 3550
- 5d Likhar PR, Subhas MS, Roy S, Kantam ML, Sridhar B, Seth RK, Biswas S. Org. Biomol. Chem. 2009; 7: 85
- 6a Tang B, Zhang Y, Song R, Tang D, Deng G, Wang Z, Xie Y, Xia Y, Li J. J. Org. Chem. 2012; 77: 2837
- 6b Godoi B, Schumacher RF, Zeni G. Chem. Rev. 2011; 111: 2937
- 6c Crone B, Kirsch SF, Umland KD. Angew. Chem. Int. Ed. 2010; 49: 4661
- 7a Yang Z, Jiang R, Zheng C, You S. J. Am. Chem. Soc. 2018; 140: 3114
- 7b Liebov BK, Harman WD. Chem. Rev. 2017; 117: 13721
- 7c Ouyang XH, Song R, Liu B, Li J. Chem. Commun. 2016; 52: 2573
- 7d Wu W, Xu R, Zhang L, You S. Chem. Sci. 2016; 7: 3427
- 7e Wang L, Wang A, Xia Y, Wu X, Liu X, Liang Y. Chem. Commun. 2014; 50: 13998
- 7f Aparece MD, Vadola PA. Org. Lett. 2014; 16: 6008
- 7g Zhang J, Hu B, Ji M, Ye S, Zhu G. Org. Lett. 2018; 20: 2988
- 7h Li J, Zhang W, Wei X, Liu F, Hao W, Wang S, Li G, Tu S, Jiang B. J. Org. Chem. 2017; 82: 6621
- 7i Dong W, Yuan Y, Gao X, Keranmu M, Li W, Xie X, Zhang Z. Org. Lett. 2018; 20: 5762
- 7j Wu J, Ma D, Tang G, Zhao Y. Org. Lett. 2019; 21: 7674
- 8a Zhang L, Ma L, Zhou H, Yao J, Li X, Qiu G. Org. Lett. 2018; 20: 2407
- 8b Liu R, Li M, Xie W, Zhou H, Zhang Y, Qiu G. J. Org. Chem. 2019; 84: 11763
- 8c Qiu G, Chen Z.-F, Xie W, Zhou H. Eur. J. Org. Chem. 2019; 4327
- 8d Zheng Y, Liu M, Qiu G, Xie W, Wu J. Tetrahedron 2019; 75: 1663
- 8e Wang Y.-H, Qiu G, Zhou H, Xie W, Liu J.-B. Tetrahedron 2019; 75: 3850
- 8f Wang Y.-H, Ouyang B, Qiu G, Xie W, Liu J.-B. Org. Biomol. Chem. 2019; 17: 4335
- 8g Yang M, Hu X, Ouyang B, Xie W, Liu J.-B. Tetrahedron 2019; 75: 3516
- 8h Wang Y.-C, Wang R.-X, Qiu G, Zhou H, Xie W, Liu J.-B. Org. Chem. Front. 2019; 6: 2471
- 9a Feng S, Li J, Liu Z, Sun H, Shi H, Wang X, Xie X, She X. Org. Biomol. Chem. 2017; 15: 8820
- 9b Qiu G, Liu T, Ding Q. Org. Chem. Front. 2016; 3: 510
- 9c Dutta U, Deb A, Lupton D, Maiti D. Chem. Commun. 2015; 51: 17744
- 9d Moriyama K, Nakamura Y, Togo H. Org. Lett. 2014; 16: 3812
- 9e Lu L.-H, Zhou S.-J, Sun M, Chen J.-L, Xia W, Yu X, Xu X, He W.-M. ACS Sustaniable Chem. Eng. 2019; 7: 1574
- 9f Xie LY, Peng S, Liu F, Chen G.-R, Xia W, Yu X, Li W.-F, Cao Z, He W.-M. Org. Chem. Front. 2018; 5: 2604
- 9g Lu L.-H, Zhou S.-J, He W.-B, Xia W, Chen P, Yu X, Xu X, He W.-M. Org. Biomol. Chem. 2018; 16: 9064
- 9h Xie L.-Y, Peng S, Fan T.-G, Liu Y.-F, Sun M, Jiang L.-L, Wang X.-X, Cao Z, He W.-M. Sci. China Chem. 2019; 62: 460
- 10a Hegmann N, Prusko L, Heinrich MR. Org. Lett. 2017; 19: 2222
- 10b Bansode AH, Shaikh SR, Gonnade RG, Patil NT. Chem. Commun. 2017; 53: 9081
- 10c Yuan Z, Gai K, Wu Y, Wu J, Lin A, Yao H. Chem. Commun. 2017; 53: 3485
- 10d Reddy CR, Ranjan R, Prajapti SK, Warudikar K. J. Org. Chem. 2017; 82: 6932
- 10e He Y, Qiu G. Org. Biomol. Chem. 2017; 15: 3485
- 10f Jin D, Gao P, Chen D, Chen S, Wang J, Liu X, Yong Y. Org. Lett. 2016; 18: 3486
- 10g Ni S, Cao J, Mei H, Han J, Li S, Pan Y. Green Chem. 2016; 18: 3935
- 10h Yang X, Long Y, Chen F, Han B. Org. Chem. Front. 2016; 3: 184
- 10i Wen J, Wei W, Xue S, Yang D, Lou Y, Gao C, Wang H. J. Org. Chem. 2015; 80: 4966
- 10j Yang X, Ouyang X, Wei W, Song R, Li J. Adv. Synth. Catal. 2015; 357: 1161
- 11a Chen D, Shan Y, Li J, You J, Sun X, Qiu G. Org. Lett. 2019; 21: 4044
- 11b Ge G, Ding C, Hou X. Org. Chem. Front. 2014; 1: 382
- 11c Wu C, Wang Z, Hu Z, Zeng F, Zhang X.-Y, Cao Z, Tang Z, He W.-M, Xu X.-H. Org. Biomol. Chem. 2018; 16: 3177
- 11d Xie L.-Y, Peng S, Liu F, Yi J.-Y, Wang M, Tang Z, Xu X, He W.-M. Adv. Synth. Catal. 2018; 360: 4259
- 11e Wu C, Lu L.-H, Peng A.-Z, Jia G.-K, Peng C, Cao Z, Tang Z, He W.-M, Xu X. Green Chem. 2018; 20: 3683
- 11f Gong X, Chen J, Li X, Xie W, Wu J. Chem. Asian J. 2018; 13: 2543
- 11g Zhao Y, Luo Y, Zhu Y, Wang H, Zhou H, Tan H, Zhou Z. Synlett 2018; 29: 773
- 11h Zhao Y.-H, Li Y, Luo M, Tang Z, Deng K. Synlett 2016; 27: 2597
- 11i Zhao Y, Li Y, Guo T, Tang Z, Xie W, Zhao G. Tetrahedron Lett. 2016; 57: 2257
- 11j Guo T, Liu Y, Zhao Y.-H, Zhang P.-K, Han S.-L, Liu H.-M. Tetrahedron Lett. 2016; 57: 4629
- 11k Guo T, Liu Y, Zhao Y.-H, Zhang P.-K, Han S.-L, Liu H.-M. Tetrahedron Lett. 2016; 57: 3920
- 11l Zhen L, Fang C, Zheng Y, Qiu G, Li X, Zhou H. Tetrahedron Lett. 2018; 59: 3934
- 11m Xie W, Wu Y, Zhang J, Mei Q, Zhang Y, Zhu N, Liu R, Zhang H. Eur. J. Med. Chem. 2018; 145: 35
- 11n Zhang J, Li X, Xie W, Ye S, Wu J. Org. Lett. 2019; 21: 4950
- 11o Zong Y, Lang L, Yang M, Li X, Fan X, Wu J. Org. Lett. 2019; 21: 1935
- 11p Wang X, Yang M, Xie W, Fan X, Wu J. Chem. Commun. 2019; 55: 6010
- 12a Liu T, Myers MC, Yu Y. Angew. Chem. Int. Ed. 2017; 56: 306
- 12b Dutta U, Deb A, Lupton D, Maiti D. Chem. Commun. 2015; 51: 17744
- 12c Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
- 12d Moriyama K, Nkamura Y, Togo H. Org. Lett. 2014; 16: 3812
- 13 CCDC 1949292 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 14a Zhang L, Lu P, Wang Y. Org. Biomol. Chem. 2015; 13: 8322
- 14b Wen Q, Jin J, Mei Y, Lu P, Wang Y. Eur. J. Org. Chem. 2013; 4032
- 15a Becker P, Duhamel T, Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2018; 57: 5166
- 15b Natarajan P, Priya P, Chuskit D. Green Chem. 2017; 19: 5854
- 16a Liu L, Chen D, Yao J, Zong Q, Wang J, Zhou H. J. Org. Chem. 2017; 82: 4625
- 16b Ali S, Zhu H, Xia X, Ji K, Yang Y, Song X, Liang Y. Org. Lett. 2011; 13: 2598
- 17 Kandepi VV. K. M, Narender N. Synthesis 2012; 44: 15
For selected examples on Oxone chemistry, see:
For examples on alkynylimines, see:
For other dual-functionalized synthons, see: