Synlett 2019; 30(20): 2263-2267
DOI: 10.1055/s-0039-1690250
letter
© Georg Thieme Verlag Stuttgart · New York

Geminal Difunctionalization of Vinylarenes: Concise Synthesis of 1,3-Dioxolan-4-ones

Pandur Venkatesan Balaji
,
Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India   Email: scn@iisc.ac.in
› Author Affiliations
Further Information

Publication History

Received: 08 August 2019

Accepted after revision: 22 October 2019

Publication Date:
06 November 2019 (online)


Abstract

We report a straightforward method for the synthesis of five-membered 1,3-dioxolan-4-ones by an unprecedented oxidative alkene geminal difunctionalization strategy using α-hydroxy carboxylic acids. Under the geminal oxidative addition conditions, various substituted α-hydroxy carboxylic acids and styrenes containing a variety of substituents, including β-substituted styrenes, were effectively coupled regioselectively (anti-Markovnikov) with an isobutyl-substituted chiral α-hydroxy carboxylic acid, providing an annulation with excellent dia­­stereoselectivity. An aryl migration in the semipinacol rearrangement leading to geminal oxidative addition of the α-hydroxy carboxylic acids was confirmed by deuterium-labelling and control studies.

Supporting Information

 
  • References and Notes

    • 1a Coppola GM, Schuster HF. α-Hydroxy Acids in Enantioselective Synthesis. Wiley-VCH; Weinheim: 1997
    • 1b Paek S.-M, Jeong M, Jo J, Heo YM, Han YT, Yun H. Molecules 2016; 21: 951
    • 2a Seebach D, Boes M, Naef R, Schweizer WB. J. Am. Chem. Soc. 1983; 105: 5390
    • 2b Seebach D, Naef R, Calderari G. Tetrahedron 1984; 40: 1313
    • 2c Naef R, Seebach D. Liebigs Ann. Chem. 1983; 1930
    • 2d Seebach D, Sting AR, Hoffmann M. Angew. Chem. Int. Ed. 1996; 35: 2708
  • 3 Aitken RA, McGill SD, Power LA. ARKIVOC 2006; (vii): 292

    • For representative reports, see:
    • 4a Krysan DJ, Mackenzie PB. J. Am. Chem. Soc. 1988; 110: 6273
    • 4b Heckmann B, Mioskowski C, Bhatt RK, Falck JR. Tetrahedron Lett. 1996; 37: 1421
    • 4c Aitken RA, Thomas AW. Synlett 1998; 102
    • 4d Reddy GV, Sreevani V, Iyengar DS. Tetrahedron Lett. 2001; 42: 531
    • 4e Blay G, Fernández I, Monje B, Pedro JR. Tetrahedron 2004; 60: 165
    • 4f Hynes PS, Stranges D, Stupple PA, Guarna A, Dixon DJ. Org. Lett. 2007; 9: 2107
    • 4g Hashimoto T, Fukumoto K, Abe N, Sakata K, Maruoka K. Chem. Commun. 2010; 7593
    • 4h Banville J, Bouthillier G, Plamondon S, Remillard R, Meanwell NA, Martel A, Walker MA. Tetrahedron Lett. 2010; 51: 3170
    • 4i Blay G, Fernández I, Monje B, Montesinos-Magraner M, Pedro JR. Tetrahedron 2011; 67: 881
    • 4j Liao H.-C, Yao K.-J, Tsai Y.-C, Uang B.-J. Tetrahedron: Asymmetry 2017; 28: 803
    • 5a Petasis NA, Lu S.-P. J. Am. Chem. Soc. 1995; 117: 6394
    • 5b Petasis NA, Lu S.-P. Tetrahedron Lett. 1996; 37: 141
    • 6a Kneer G, Mattay J, Raabe G, Krüger C, Lauterwein J. Synthesis 1990; 599
    • 6b Marsini MA, Huang Y, Lindsey CC, Wu KL, Pettus TR. R. Org. Lett. 2008; 10: 1477
    • 6c Dory YL, Roy A.-L, Soucy P, Deslongchamps P. Org. Lett. 2009; 11: 1197
    • 7a Beckwith AL. J, Chai CL. L. Tetrahedron 1993; 49: 7871
    • 7b Abazi S, Rapado LP, Renaud P. Org. Biomol. Chem. 2011; 9: 5773
    • 8a See refs. 1 and 3.
    • 8b Sefkow M. J. Org. Chem. 2001; 66: 2343
    • 8c Battaglia A, Guerrini A, Bertucci C. J. Org. Chem. 2004; 69: 9055
    • 8d Tietze L, Singidi R, Gericke K. Chem. Eur. J. 2007; 13: 9939
    • 8e Eckelbarger JD, Wilmot JT, Epperson MT, Thakur CS, Shum D, Antczak C, Tarassishin L, Djaballah H, Gin DY. Chem. Eur. J. 2008; 14: 4293
    • 8f Wu H.-H, Hsu S.-C, Hsu F.-L, Uang B.-J. Eur. J. Org. Chem. 2014; 4351
  • 9 Chung IS, Matyjaszewski K. Macromolecules 2003; 36: 2995
    • 10a Kameyama A, Shibuya Y, Kusuoku H, Nishizawa Y, Nakano S, Tatsuta K. Tetrahedron Lett. 2003; 44: 2737
    • 10b Choi Y, Pu Y, Peach ML, Kang J.-H, Lewin NE, Sigano DM, Garfield SH, Blumberg PM, Marquez VE. J. Med. Chem. 2007; 50: 3465
    • 10c Calo F, Richardson J, White AJ. P, Barrett AG. M. Tetrahedron Lett. 2009; 50: 1566
    • 10d Buckel I, Molitor D, Liermann JC, Sandjo LP, Berkelmann-Löhnertz B, Opatz T, Thines E. Phytochemistry 2013; 89: 96

      For representative recent synthesis of 1,3-dioxolan-4-ones using condensation methods, see:
    • 11a Pearson WH, Cheng MC. J. Org. Chem. 1987; 52: 1353
    • 11b Orthland J.-Y, Vicart N, Greiner A. J. Org. Chem. 1995; 60: 1880
    • 11c Grover PT, Bhongle NN, Wald SA, Senanayake CH. J. Org. Chem. 2000; 65: 6283
    • 11d Srivastava N, Dasgupta SK, Banik BK. Tetrahedron Lett. 2003; 44: 1191
    • 11e Ferrett RR, Hyde MJ. Lahti K. A, Friebe TL. Tetrahedron Lett. 2003; 44: 2573
    • 11f Banik BK, Chapa M, Marquez J, Cardona M. Tetrahedron Lett. 2005; 46: 2341
    • 11g Misaki T, Ureshino S, Nagase R, Oguni Y, Tanabe Y. Org. Process Res. Dev. 2006; 10: 500
    • 11h Nagase R, Oguni Y, Misaki T, Tanabe Y. Synthesis 2006; 3915
    • 11i Boyko VI, Rodik RV, Severenchuk IN, Voitenko ZV, Kalchenkoa VI. Synthesis 2007; 2095
    • 11j Chehidi I, Amanetoullah AO, Chaabouni MM, Baklouti A. J. Fluorine Chem. 2010; 131: 66
    • 11k Küçük HB. Tetrahedron Lett. 2015; 56: 5583
  • 12 Ishihara K, Karumi Y, Kubota M, Yamamoto H. Synlett 1996; 839
  • 13 Su X, Bhongle NN, Pflum D, Butler H, Wald SA, Bakale RP, Senanayake CH. Tetrahedron: Asymmetry 2003; 14: 3593

    • For selected examples, see:
    • 14a Eberle MK, Kahle GG. J. Am. Chem. Soc. 1977; 99: 6038
    • 14b Faunce JA, Friebe TL, Grisso BA, Losey EN, Sabat M, Mackenzie PB. J. Am. Chem. Soc. 1989; 111: 4508
    • 14c Faunce JA, Crisso BA, Mackenzie PB. J. Am. Chem. Soc. 1991; 113: 3418
    • 14d Chaminade X, Coulombel L, Olivero S, Dunach E. Eur. J. Org. Chem. 2006; 3554
    • 14e Burghart-Stoll H, Brückner R. Eur. J. Org. Chem. 2012; 3978
  • 15 Nexeux M, Seiller B, Hagedorn F, Bruneau C, Dimeuf PH. J. Organomet. Chem. 1993; 451: 133
    • 16a Balaji PV, Chandrasekaran S. Chem. Commun. 2014; 50: 70
    • 16b Balaji PV, Chandrasekaran S. Tetrahedron 2016; 72: 1095
    • 16c Balaji PV, Chandrasekaran S. Eur. J. Org. Chem. 2016; 2574
  • 17 Because the observed diastereoselectivities in Table 1 (including 3f) are essentially highly substrate controlled, a more robust and comprehensive catalyst-controlled protocol for the highly enantio- and diastereoselective synthesis of 1,3-dioxolan-4-ones through geminal dioxygenation of alkenes is being currently pursued in the authors’ laboratory, the results of which will be disclosed in a separate article in the future.
  • 18 1,3-Dioxolan-4-ones 3as; General Procedure NBS (0.60 mmol) and AgOTf (0.70 mmol) were added to a well-stirred colorless solution of the appropriate α-hydroxy carboxylic acid 1 (0.50 mmol) and the appropriate styrene 2 (0.75 mmol) in CH2Cl2 (5 mL) at rt (25 °C) under argon in a dry Schlenk flask. The mixture initially changed from colorless to cloudy white, then to colorless with a pale-yellow suspension, and finally to colorless with a pale-gray precipitate after 1 h. The progress of the reaction was monitored by TLC. The mixture was stirred for 1 h at rt, then H2O (3 mL), sat. aq NaHCO3 (4 mL), and sat. aq Na2S2O3 (4 mL) were added successively. The mixture was extracted with CH2Cl2 (3 × 5 mL), and the combined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. The crude product was purified by flash chromatography [silica gel, pentane–Et2O (25:1)]. (5R)-2-Benzyl-5-phenyl-1,3-dioxolan-4-one (3a) Yield: 97 mg (76%). Diastereomer A: white solid; mp 82–84 °C; [α]D 24 –89.7 (c 1.0, CHCl3). IR (thin film): 3032, 2924, 1796, 1496, 1454, 1401, 1274, 1214 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.21 (m, 10 H), 5.86 (t, J = 4.5 Hz, 1 H), 5.19 (s, 1 H), 3.30–3.20 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 171.3, 133.5, 133.0, 130.2, 129.2, 128.6, 128.5, 127.3, 127.0, 103.9, 76.8, 40.5. HRMS (ESI-QTOF): m/z [M + Na]+ calcd for C16H14NaO3: 277.0841; found: 277.0843. Diastereomer B: white solid; mp 53–54 °C; [α]D 24 –38.2 (c 1.0, CHCl3). IR (thin film): 3031, 2924, 1797, 1495, 1454, 1215, 1177, 1109, 992, 934 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.38–7.25 (m, 10 H), 6.02 (t, J = 3.9 Hz, 1 H), 5.11 (s, 1 H), 3.21 (d, J = 4.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 164.1, 126.6, 126.0, 123.2, 122.0, 121.9, 121.6, 120.4, 118.9, 97.9, 68.3, 34.3. HRMS (ESI-QTOF): m/z [M + Na]+ calcd for C16H14NaO3: 277.0841; found: 277.0850. 2-Benzyl-5,5-dimethyl-1,3-dioxolan-4-one-d 2 (3s) Colorless oil; yield: 66 mg (63%). IR (thin film): 2984, 2926, 1798, 1387, 1281, 1183, 1008, 986 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.34–7.25 (m, 5 H), 5.72 (s, 1 H, HCCD2Ph), 1.38 (s, 3 H), 1.34 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 175.4, 133.3, 130.1, 128.4, 127.2, 101.9, 77.2, 40.4 (quint, 3 J C–D = 19.6 Hz), 24.4, 21.8. HRMS (ESI-QTOF): m/z [M + Na]+ calcd for C12H12D2NaO3: 231.0966; found: 231.0969.