Synlett 2019; 30(06): 713-716
DOI: 10.1055/s-0037-1612124
letter
© Georg Thieme Verlag Stuttgart · New York

Preparation of 1,3-Thiazolidine-2-thiones by Using Potassium Ethylxanthate as a Carbon Disulfide Surrogate

,
School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P. R. of China   Email: yqy@ujs.edu.cn
,
Weixiang Xiong
› Author Affiliations
Financial support was provided by the National Natural Science Foundation of China (21572118 and 21572080) and Jiangsu University (10JDG042 and 14JDG018).
Further Information

Publication History

Received: 12 November 2018

Accepted after revision: 17 January 2019

Publication Date:
21 February 2019 (online)


Abstract

A simple procedure is presented for preparing 1,3-thiazolidine-2-thiones by using potassium ethylxanthate and the corresponding β-amino alcohols as the starting materials in the presence of ethanol.

Supporting Information

 
  • References and Notes


    • For applications of 1,3-thiazolidine-2-thiones in asymmetric synthesis, see:
    • 1a Schleicher KD, Jamison TF. Beilstein J. Org. Chem. 2013; 9: 1533
    • 1b Hodgson DM, Man S. Chem. Eur. J. 2011; 17: 9731
    • 1c Wu Y, Shen X, Yang Y.-Q, Hu Q, Huang J.-H. J. Org. Chem. 2004; 69: 3857
    • 1d Kennington SC. D, Romo JM, Romea P, Urpí F. Org. Lett. 2016; 18: 3018
    • 1e Skaanderup PR, Jensen T. Org. Lett. 2008; 10: 2821
    • 1f Tungen JE, Aursnes M, Hansen TV. Tetrahedron Lett. 2015; 56: 1843
    • 1g Velazquez F, Olivo HF. Curr. Org. Chem. 2002; 6: 303
  • 2 Aitken RA, Armstrong DP, Galt RH. B, Mesher ST. E. J. Chem. Soc., Perkin Trans. 1 1997; 2139
  • 3 Hwu JR, Hsu YC. Chem. Eur. J. 2011; 17: 4727
    • 4a Yamada S, Katsumata H. J. Org. Chem. 1999; 64: 9365
    • 4b Yamada S, Misono T, Iwai Y, Masumizu A, Akiyama Y. J. Org. Chem. 2006; 71: 6872

      For examples of 1,3-thiazolidine-2-thiones as sulfur donors, see:
    • 5a Kataoka T, Kinoshita H, Kinoshita S, Osamura T, Watanabe S.-i, Iwamura T, Muraoka O, Tanabe G. Angew. Chem. Int. Ed. 2003; 42: 2889
    • 5b Kinoshita H, Osamura T, Mizuno K, Kinoshita S, Iwamura T, Watanabe S.-i, Takaoka T, Muraoka O, Tanabe G. Chem. Eur. J. 2006; 12: 3896
    • 5c Minor-Villar L, Tello-Aburto R, Olivo HF, Fuentes A, Romero-Ortega M. Synlett 2012; 23: 2835
    • 6a Crimmins MT, King BW, Tabet EA, Chaudhary K. J. Org. Chem. 2001; 66: 894
    • 6b Prashad M, Shieh W.-C, Liu Y. Tetrahedron 2016; 72: 17
    • 6c Wu Y, Sun Y.-P, Yang Y.-Q, Hu Q, Zhang Q. J. Org. Chem. 2004; 69: 6141
    • 6d Nagao Y, Ikeda T, Yagi M, Fujita E. J. Am. Chem. Soc. 1982; 104: 2079
    • 6e Nagao Y, Hagiwara Y, Kumagai T, Ochiai M, Inoue T, Hashimoto K, Fujita E. J. Org. Chem. 1986; 51: 2391
    • 6f Nagao Y, Nagase Y, Kumagai T, Matsunaga H, Abe T, Shimada O, Hayashi T, Inoue Y. J. Org. Chem. 1992; 57: 4243
    • 6g Crimmins MT, She J. Synlett 2004; 1371
    • 6h Evans DA, Tedrow JS, Shaw JT, Downey CW. J. Am. Chem. Soc. 2002; 124: 392
    • 6i Evans DA, Downey CW, Shaw JT, Tedrow JS. Org. Lett. 2002; 4: 1127
    • 6j Hsiao C.-N, Liu L, Miller MJ. J. Org. Chem. 1987; 52: 2201
    • 6k Cosp A, Romea P, Talavera P, Urpí F, Vilarrasa J, Font-Bardia M, Solans X. Org. Lett. 2001; 3: 615
    • 6l Patel J, Clavé G, Renard P.-Y, Franck X. Angew. Chem. Int. Ed. 2008; 47: 4224
    • 7a González Á, Aiguadé J, Urpí F, Vilarrasa J. Tetrahedron Lett. 1996; 37: 8949
    • 7b Ariza X, Garcia J, Romea P, Urpí F. Synthesis 2011; 2175
    • 7c Osorio-Lozada A, Olivo HF. Org. Lett. 2008; 10: 617
    • 8a Chen N, Jia W, Xu J. Eur. J. Org. Chem. 2009; 5841
    • 8b Delaunay D, Toupet L, Le Corre M. J. Org. Chem. 1995; 60: 6604
    • 8c Fujita M, Miyashita Y, Amir N, Kawamoto Y, Kanamori K, Fujisawa K, Okamoto K.-i. Polyhedron 2005; 24: 1991
    • 8d Gálvez E, Romea P, Urpí F. Org. Synth. 2009; 86: 70
  • 9 Sudo A, Morioka Y, Koizumi E, Sanda F, Endo T. Tetrahedron Lett. 2003; 44: 7889
    • 10a Prat D, Hayler J, Wells A. Green Chem. 2014; 16: 4546
    • 10b Henderson RK, Jiménez-González C, Constable DJ. C, Alston SR, Inglis GG. A, Fisher G, Sherwood J, Binks SP, Curzons AD. Green Chem. 2011; 13: 854
  • 11 Lu Z, Yang Y.-Q, Li J.-H, Wei J.-N, Wang Y.-Z. Synth. Commun. 2017; 47: 2215
  • 12 Tan W, Wei J, Jiang X. Org. Lett. 2017; 19: 2166
    • 13a Beesley RM, Ingold CK, Thorpe JF. J. Chem. Soc., Trans. 1915; 107: 1080
    • 13b Ingold CK. J. Chem. Soc., Trans. 1921; 119: 305
    • 13c Ingold CK, Sako S, Thorpe JF. J. Chem. Soc., Trans. 1922; 121: 1177
    • 13d Zheng Y., Xu J.; Prog. Chem (Beijing, China); 2014, 26: 1471; DOI: 10.7536/PC140310
    • 13e O’Neil MJ, Riesebeck T, Cornella J. Angew. Chem. Int. Ed. 2018; 57: 9103
    • 14a Pawlowski M, Wojtasiewicz K, Maurin JK, Leniewski A, Blachut D, Czarmocki Z. Heterocycles 2007; 71: 1743
    • 14b Kaneti J, Kirby AJ, Koedjikov AH, Pojarlieff IG. Org. Biomol. Chem. 2004; 2: 1098
    • 14c Schmid MB, Zeitler K, Gschwind RM. J. Am. Chem. Soc. 2011; 133: 7065
    • 14d Chen N, Huang Z, Zhou C, Xu J. Tetrahedron 2011; 67: 7971
    • 14e Patil NT, Raut VS, Kavthe RD, Reddy VV. N, Raju PV. K. Tetrahedron Lett. 2009; 50: 6576
  • 15 (4R)-4-Phenyl-1,3-thiazolidine-2-thione (2a) and (4R)-4-Phenyl-1,3-oxazolidine-2-thione; Typical Procedure Potassium ethylxanthate (802 mg, 5.0 mmol) was rapidly added to a suspension of (2R)-2-amino-2-phenylethanol (1a; 137 mg, 1.0 mmol) in absolute EtOH (2.0 mL) in a 20 mL autoclave. The autoclave was flushed with N2 for 5 min, then sealed and heated in an oil bath at 100 °C for 24 h. It was then cooled to r.t. and the mixture was transferred to a 50 mL round-bottomed flask and concentrated under reduced pressure to remove the alcohol. H2O (10 mL) was added to the slurry, and the mixture was extracted with EtOAc (3 × 30 mL). The organic phases were combined, washed with brine (30 mL), dried (Na2SO4), and concentrated to give a crude product that was purified by flash chromatography [silica gel, EtOAc–PE (1:3)] to afford 2a and 3a. 2a8b Off-white solid; yield: 160 mg (0.82 mmol, 82%); mp 123–125 °C [Lit.8b 124–125 °C (aq EtOH)]; Rf = 0.3 (EtOAc–PE, 1:3), [α]D 22 –205.8 (c 1.03, CHCl3) [Lit. –209.32 (c 0.35, CHCl3)]. IR (KBr): 3132, 2923, 1489, 1452, 1258, 1050, 941, 759 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.62 (br s, 1 H), 7.46–7.36 (m, 5 H), 5.32 (t, J = 8.0 Hz, 1 H), 3.86 (dd, J = 11.2, 8.0 Hz, 1 H), 3.52 (dd, J = 11.2, 8.0 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 201.6, 138.0, 129.4, 129.2, 126.3, 67.5, 41.6. ESI-MS: m/z = 196.0 [M + H]+. 3a8b,11 White solid; yield: 18 mg (0.10 mmol, 10%); mp 120.0–120.4 °C (Lit.8b 121–122 °C); Rf = 0.3 (EtOAc–PE, 1:3); [α]D 20 –78.5 (c 0.20, CHCl3) [Lit.8b –79.3 (c 0.21, CHCl3)]. IR (KBr): 3436, 1525, 1170, 969, 701 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.95–7.50 (br s, 1 H), 7.45–7.36 (m, 3 H), 7.34–7.30 (m, 2 H), 5.12 (dd, J = 8.8, 7.6 Hz, 1 H), 5.00 (t, J = 8.8 Hz, 1 H), 4.49 (dd, J = 9.2, 7.2 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 189.6, 137.9, 129.2, 129.0, 126.2, 77.6, 60.1. ESI-MS: m/z = 178.0 [M–H].