Synlett 2019; 30(06): 743-747
DOI: 10.1055/s-0037-1612087
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2,5-Disubstituted Oxazoles from Arylacetylenes and α-Amino Acids through an I2/Cu(NO3)2•3H2O-Assisted Domino Sequence

Jungang Wang
a   School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. of China
,
Yan Cheng
b   Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China   Email: chwuax@mail.ccnu.edu.cn
,
Jiachen Xiang
b   Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China   Email: chwuax@mail.ccnu.edu.cn
,
Anxin Wu*
b   Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China   Email: chwuax@mail.ccnu.edu.cn
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (Grants 21772051 and 21472056) and the Natural Science Foundation of Hubei Province (No. 2017CFB355).
Further Information

Publication History

Received: 17 December 2018

Accepted after revision: 07 January 2019

Publication Date:
07 February 2019 (online)


Abstract

A new strategy has been developed for the synthesis of 2,5-disubstituted oxazoles from easily available arylacetylenes and α-amino acids in the presence of Cu(NO3)2•3H2O and iodine. This reaction ­process involves the I2/Cu(NO3)2•3H2O-assisted transformation of ­arylacetylene to α-iodo acetophenone, Kornblum oxidation to phenylglyoxal, condensation to imine, decarboxylation/annulation/oxidation reaction sequence to approach 2,5-disubstituted oxazoles.

Supporting Information

 
  • References and Notes

    • 1a Kibriz IE, Sacmaci M, Sahin E, Yildirim IP. Tetrahedron 2017; 73: 1795
    • 1b Jin Z. Nat. Prod. Rep. 2011; 28: 1143
    • 1c Wan C, Gao L, Wang Q, Zhang J, Wang Z. Org. Lett. 2010; 12: 3902
    • 1d Davyt D, Serra G. Mar. Drugs 2010; 8: 2755
    • 1e Heng S, Gryncel KR, Kantrowitz ER. Bioorg. Med. Chem. 2009; 17: 3916
    • 1f Zhang J, Ciufolini MA. Org. Lett. 2009; 11: 2389
    • 1g Hughes RA, Moody C. J. Angew. Chem. Int. Ed. 2007; 46: 7930
    • 1h Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, Obach RS, O’Donnell JP. Chem. Res. Toxicol. 2002; 15: 269
  • 2 Pettit GR, Knight JC, Delbert L, Davenport R, Pettit RK, Tucker BE, Schmidt JM. J. Nat. Prod. 2002; 65: 1793
  • 3 Coqueron P.-Y, Didier C, Ciufolini MA. Angew. Chem. Int. Ed. 2003; 42: 1411
  • 4 Raju R, Gromyko O, Fedorenko V, Luzhetskyy A, Müller R. Tetrahedron Lett. 2012; 53: 3009
  • 5 Momose Y, Maekawa T, Yamano T, Kawada M, Odaka H, Ikeda H, Sohda T. J. Med. Chem. 2002; 45: 1518
  • 6 Priestap HA, Barbieri MA, Johnson F. J. Nat. Prod. 2012; 75: 1414
  • 7 Todd PA, Brogden RN. Drugs 1986; 32: 291
  • 8 Hashimoto H, Imamura K, Haruta J.-I, Wakitani K. J. Med. Chem. 2002; 45: 1511
    • 9a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 9b Gissibl A, Finn MG, Reiser O. Org. Lett. 2005; 7: 2325
    • 9c Atkins JM, Vedejs E. Org. Lett. 2005; 7: 3351

      For selected examples, see:
    • 10a Weng Y, Lv W, Yu J, Ge B, Cheng G. Org. Lett. 2018; 20: 1853
    • 10b Hu Y, Yi R, Wang C, Xin X, Wu F, Wan B. J. Org. Chem. 2014; 79: 3052
    • 10c Wang Y.-F, Chen H, Zhu X, Chiba S. J. Am. Chem. Soc. 2012; 134: 11980

      For selected examples, see:
    • 11a Zhou R.-R, Cai Q, Li D.-K, Zhuang S.-Y, Wu Y.-D, Wu A.-X. J. Org. Chem. 2017; 82: 6450
    • 11b Xu Z, Zhang C, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 11367
    • 11c Xue W.-J, Li Q, Zhu Y.-P, Wang J.-G, Wu A.-X. Chem. Commun. 2012; 48: 3485

      For selected examples, see:
    • 12a Zhang L, Zhao X. Org. Lett. 2015; 17: 184
    • 12b Zheng J, Zhang M, Huang L, Hu X, Wu W, Huang H, Jiang H. Chem. Commun. 2014; 50: 3609
    • 12c Odabachian Y, Tong S, Wang Q, Wang M, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 10878

      For selected examples, see:
    • 13a Li X, Li C, Yin B, Liu P, Li J, Shi Z, Li C. Chem. Asian J. 2013; 8: 1408
    • 13b Wang Y, Li Z, Huang Y, Tang C, Wu X, Xu J, Yao H. Tetrahedron 2011; 67: 7406
    • 13c Huang Y, Ni L, Gan F, He Y, Xu J, Wu X, Yao H. Tetrahedron 2011; 67: 2066
    • 14a Zhang ML, Zhang SH, Liu MC, Cheng J. Chem. Commun. 2011; 47: 11522
    • 14b Shen X.-B, Zhang Y, Chen W.-X, Xiao Z.-K, Hu T.-T, Shao L.-X. Org. Lett. 2014; 16: 1984
    • 15a Saito A, Taniguchi A, Kambara Y, Hanzawa Y. Org. Lett. 2013; 15: 2672
    • 15b Selvi T, Srinivasan K. Chem. Commun. 2014; 50: 10845
    • 15c Wang B, Chen Y, Zhou L, Wang J, Tung C.-H, Xu Z. J. Org. Chem. 2015; 80: 12718
    • 15d Zeng T.-T, Xuan J, Ding W, Wang K, Lu L.-Q, Xiao W.-J. Org. Lett. 2015; 17: 4070
    • 15e Chatterjee T, Cho JY, Cho EJ. J. Org. Chem. 2016; 81: 6995
  • 16 Pan J, Li X, Qiu X, Luo X, Jiao N. Org. Lett. 2018; 20: 276
    • 17a Han X. -L, Zhou C.-J, Liu X.-G, Zhang S.-S, Wang H, Li Q. Org. Lett. 2017; 19: 6108
    • 17b Querard P, Girard SA, Uhlig N, Li C.-J. Chem. Sci. 2015; 6: 7332
    • 17c Wachenfeldt HV, Röse P, Paulsen F, Loganathan N, Strand D. Chem. Eur. J. 2013; 19: 7982
    • 17d Davies PW, Cremonesi A, Dumitrescu L. Angew. Chem. Int. Ed. 2011; 50: 8931
    • 17e Bartoli G, Cimarelli C, Cipolletti R, Diomedi S, Giovannini R, Mari M, Marsili L, Marcantoni E. Eur. J. Org. Chem. 2012; 630
    • 18a Yagyu T, Takemoto Y, Yoshimura A, Zhdankin VV, Saito A. Org. Lett. 2017; 19: 2506
    • 18b Mallick R, Prabagar KB, Sahoo AK. J. Org. Chem. 2017; 82: 10583
    • 18c Yang W, Zhang R, Yi F, Cai M. J. Org. Chem. 2017; 82: 5204
    • 18d Rassadin VA, Boyarskiy VP, Kukushkin VY. Org. Lett. 2015; 17: 3502
    • 18e He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 18f Li X, Huang L, Chen H, Wu W, Huang H, Jiang H. Chem. Sci. 2012; 3: 3463
  • 19 Cano I, Álvarez E, Nicasio MC. J, Pérez P. J. Am. Chem. Soc. 2011; 133: 191
    • 20a Ma JW, Wang Q, Wang XG, Liang YM. J. Org. Chem. 2018; 83: 13296
    • 20b Suzuki S, Saito A. J. Org. Chem. 2017; 82: 11859
    • 20c Asari N, Takemoto Y, Shinomoto Y, Yagyu T, Yoshimura A, Zhdankin VV, Saito A. Asian J. Org. Chem. 2016; 5: 1314
    • 20d Bay S, Baumeister T, Hashmi AS. K, Röder T. Org. Process Res. Dev. 2016; 20: 1297
    • 20e Sueda T, Kawada A, Urashi Y, Teno N. Org. Lett. 2013; 15: 1560
    • 20f Hashmi AS. K, Jaimes MC. B, Schuster AM, Rominger F. J. Org. Chem. 2012; 77: 6394
    • 20g Senadi GC, Hu W, Hsiao J.-S, Vandavasi JK, Chen C.-Y, Wang J. Org. Lett. 2012; 14: 4478
    • 20h Hashmi AS. K, Weyrauch JP, Schuster A, Hengst T, Schetter A, Littmann A, Rudolph M, Hamzic M, Visus J, Rominger F, Frey W, Bats JW. Chem. Eur. J. 2010; 16: 956
    • 21a Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 21b Schönberg A, Moubasher R. Chem. Rev. 1952; 50: 261
    • 21c Domling A, Beck B, Eichelberger U, Sakamuri S, Menon S, Chen QZ, Lu YC, Wessjohann LA. Angew. Chem. Int. Ed. 2006; 45: 7235
    • 21d Bartoccini F, Casoli M, Mari M, Piersanti G. J. Org. Chem. 2014; 79: 3255
    • 21e Wang HQ, Xu WT, Xin LL, Liu WM, Wang ZQ, Xu K. J. Org. Chem. 2016; 81: 3681
    • 21f Xiang JC, Cheng Y, Wang ZX, Ma JT, Wang M, Tang BC, Wu YD, Wu AX. Org. Lett. 2017; 19: 2997
    • 21g Xu W, Fu H. J. Org. Chem. 2011; 76: 3846
    • 22a Yan YZ, Wang ZY. Chem. Commun. 2011; 9513
    • 22b Xu W, Fu H. J. Org. Chem. 2011; 76: 3846
    • 22c Bi H.-P, Zhao L, Liang Y.-M, Li C.-J. Angew. Chem. Int. Ed. 2009; 48: 792
    • 22d Zhang C, Das D, Seidel D. Chem. Sci. 2011; 2: 233
    • 23a Xu W, Kloeckner U, Nachtsheim BJ. J. Org. Chem. 2013; 78: 6065
    • 23b Hu T, Yan H, Liu X, Wu C, Fan Y, Huang J, Huang G. Synlett 2015; 26: 2866
    • 23c Xiang JC, Wang JG, Wang M, Meng XG, Wu A. Tetrahedron 2014; 70: 7470
    • 23d Zhu YP, Lian M, Jia FC, Liu MC, Yuan JJ, Gao QH, Wu AX. Chem. Commun. 2012; 48: 9086
    • 23e Wu X, Gao QH, Liu S, Wu AX. Org. Lett. 2014; 16: 2888
    • 24a Viswanadham KK. D R, Reddy MP, Sathyanarayana P, Ravi O, Kantc R, Reddy SB. Chem. Commun. 2014; 50: 13517
    • 24b Kalmode HP, Vadagaonkar KS, Chaskar AC. Synthesis 2015; 47: 429
    • 24c Kalmode HP, Vadagaonkar KS, Chaskar AC. RSC Adv. 2014; 4: 60316
    • 25a Wan JP, Zhou Y, Liu Y, Sheng S. Green Chem. 2016; 18: 402
    • 25b Cao S, Liu Y, Hu C, Wen C, Wan JP. ChemCatChem 2018; 10: 5021
  • 26 General procedure for synthesis of 3 (3ac as an example) The mixture of phenylacetylene 1a (1.0 mmol), 2-amino-4-methylpentanoic 2c (1.0 mmol) was mixed with Cu(NO3)2•3H2O (0.5 mmol), and I2 (1.0 mmol). The mixture was heated at 60 °C in 4 mL of DMSO in a sealed vessel for 5 h till almost completed conversion of the substrates monitored by TLC analysis. Then 50 mL water was added to the mixture, which was extracted with EtOAc three times (3 × 50 mL). The extract was washed with Na2S2O3 solution, dried over anhydrous Na2SO4 then the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 50/1) to afford the product 3ac” here