Synlett 2019; 30(06): 699-702
DOI: 10.1055/s-0037-1612076
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient and Reusable Multifunctional Composite Magnetic Nanocatalyst for Knoevenagel Condensation

Nan Yao
,
Jin Tan
,
Yang Liu
,
Yu Lin Hu  *
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. of China   Email: huyulin@ctgu.edu.cn   Email: huyulin1982@163.com
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21506115) and Excellent Dissertation of China Three Gorges University (2018SSPY055).
Further Information

Publication History

Received: 25 November 2018

Accepted after revision: 21 December 2018

Publication Date:
06 March 2019 (online)


Abstract

A range of multifunctional magnetic metal–organic framework nanomaterials consisting of various mass ratios of the metal–organic framework MIL-53(Fe) and magnetic SiO2@NiFe2O4 nanoparticles were designed, prepared, characterized, and evaluated as heterogeneous catalysts for the Knoevenagel condensation. The as-fabricated nanomaterials, especially the nanocatalyst MIL-53(Fe)@SiO2@NiFe2O4(1.0), showed good catalytic performance in the Knoevenagel condensation at room temperature as a result of synergistic interaction between the Lewis acid iron sites of MIL-53(Fe) and the active sites of the magnetic SiO2@NiFe2O4 nanoparticles. In addition, the heterogeneous catalyst was readily recovered and a recycling test showed that it could be reused for five times without significant loss of its catalytic activity, making it economical and environmentally friendly.

Supporting Information

 
  • References and Notes

  • 1 Vekariya RH, Patel HD. Synth. Commun. 2014; 44: 2756
  • 2 Krawczyk H, Albrecht Ł. Synthesis 2005; 2887
  • 3 Raytchev PD, Roussi L, Dutasta JP, Martinez A, Dufaud V. Catal. Commun. 2012; 28: 1
  • 4 Wang H, Wang C, Yang Y, Zhao M, Wang Y. Catal. Sci. Technol. 2017; 7: 405
  • 5 Pullabhotla VS. R. R, Rahman A, Jonnalagadda SB. Catal. Commun. 2009; 10: 365
  • 6 Sharma P, Sasson Y. RSC Adv. 2017; 7: 25589
  • 7 Tuci G, Luconi L, Rossin A, Berretti E, Ba H, Innocenti M, Yakhvarov D, Caporali S, Pham-Huu C, Giambastiani G. ACS Appl. Mater. Interfaces 2016; 8: 30099
  • 8 Li G, Xiao J, Zhang W. Green Chem. 2012; 14: 2234
  • 9 Şen B, Akdere E.-H, Şavk A, Gültekin E, Paralı Ö, Göksu H, Şen F. Appl. Catal., B 2018; 225: 148
  • 10 Shirotori M, Nishimura S, Ebitani K. J. Mater. Chem. A 2017; 5: 6947
  • 11 del Hierro I, Pérez Y, Fajardo M. Mol. Catal. 2018; 450: 112
  • 12 Boroujeni KP, Jafarinasab M. Chin. Chem. Lett. 2012; 23: 1067
  • 13 Elhamifar D, Kazempoor S. J. Mol. Catal. A: Chem. 2016; 415: 74
  • 14 Xu G, Wang L, Li M, Tao M, Zhang W. Green Chem. 2017; 19: 5818
  • 15 Calvino-Casilda V, Olejniczak M, Martín-Aranda RM, Ziolek M. Microporous Mesoporous Mater. 2016; 224: 201
  • 16 Varadwaj GB. B, Rana S, Parida KM. Dalton Trans. 2013; 42: 5122
  • 17 Franconetti A, Domínguez-Rodríguez P, Lara-García D, Prado-Gotor R, Cabrera-Escribano F. Appl. Catal., A 2016; 517: 176
  • 18 Li Q, Wang X, Yu Y, Chen Y, Dai L. Tetrahedron 2016; 72: 8358
  • 19 Xu W, Thapa KB, Ju Q, Fang Z, Huang W. Coord. Chem. Rev. 2018; 373: 199
  • 20 Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA. Chem. Soc. Rev. 2014; 43: 6062
  • 21 Zhou W, Wu Y.-P, Wang X, Tian J.-W, Huang D.-D, Zhao J, Lan Y.-Q, Li D.-S. CrystEngComm 2018; 20: 4804
  • 22 Zhang Y, Wang Y, Liu L, Wei N, Gao M.-L, Zhao D, Han Z.-B. Inorg. Chem. 2018; 57: 2193
  • 23 Ezugwu CI, Mousavi B, Asraf MA, Luo Z, Verpoort F. J. Catal. 2016; 344: 445
  • 24 Rambabu D, Ashraf M, Pooja, Gupta A, Dhir A. Tetrahedron Lett. 2017; 58: 4691
  • 25 Opanasenko M, Dhakshinamoorthy A, Shamzhy M, Nachtigall P, Horáček M, Garcia H, Čejka J. Catal. Sci. Technol. 2013; 3: 500
  • 26 Zhang L, He Y, Yang X, Yuan H, Du Z, Wu Y. Chem. Eng. J. (Amsterdam, Neth.) 2015; 278: 129
  • 27 Baig RB. N, Nadagouda MN, Varma RS. Coord. Chem. Rev. 2015; 287: 137
  • 28 Babazadeh M, Hosseinzadeh-Khanmiri R, Abolhasani J, Ghorbani-Kalhor E, Hassanpour A. RSC Adv. 2015; 5: 19884
  • 29 Yang Q, Zhu Y, Luo B, Lan F, Wu Y, Gu Z. Nanoscale 2017; 9: 527
  • 30 Wang H, Zhang W, Zhang F, Cao Y, Su W. J. Magn. Magn. Mater. 2008; 320: 1916
  • 31 Liu Y, Cherkasov N, Gao P, Fernández J, Lees MR, Rebrov EV. J. Catal. 2017; 355: 120
  • 32 Wang G.-H, Lei Y.-Q, Song H.-C. Anal. Methods 2014; 6: 7842
  • 33 Yang Q, Wang J, Chen X, Yang W, Pei H, Hu N, Li Z, Suo Y, Li T, Wang J. J. Mater. Chem. A 2018; 6: 2184
  • 34 Parmekar MV, Salker AV. RSC Adv. 2016; 6: 108458
  • 35 Blanco-Gutierrez V, Virumbrales M, Saez-Puche R, Torralvo-Fernandez MJ. J. Phys. Chem. C 2013; 117: 20927
  • 36 Shigematsu A, Yamada T, Kitagawa H. J. Am. Chem. Soc. 2011; 133: 2034
  • 37 Dong W, Liu X, Shi W, Huang Y. RSC Adv. 2015; 5: 17451
  • 38 2-Benzylidenemalononitrile; Typical ProcedureA mixture of PhCHO (5 mmol), malononitrile (5 mmol), EtOH (15 mL), and MIL-53(Fe)@SiO2@NiFe2O4(1.0) (0.1 g) was magnetically stirred at r.t. until the reaction was complete (TLC). The catalyst that precipitated out from the mixture was collected by using an external magnet, washed with EtOH, and reused for consecutive cycles under the same reaction conditions. The product was crystallized from EtOH to give a white solid; yield: 755 mg (98%); mp 83.8–84.1 °C. 1H NMR (400 MHz, CDCl3): δ = 7.47–7.64 (m, 3 H, Ar-H), 7.78 (s, 1 H, CH), 7.85–7.94 (m, 2 H, Ar-H). MS: m/z [M + H]+ calcd for C10H7N2: 155.1; found: 155.06; Anal. Calcd for C10H6N2: C, 77.87; H, 3.90; N, 18.15. Found: C, 77.91; H, 3.92; N, 18.17.