Synthesis 2019; 51(20): 3784-3791
DOI: 10.1055/s-0037-1611907
short review
© Georg Thieme Verlag Stuttgart · New York

Metal-Catalyzed Site-Selective Monoacylation of Diols in Aqueous Media

Yuyang Li
,
Ronald Kluger
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
› Author Affiliations
Supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (Grant/Award No: A9918).
Further Information

Publication History

Received: 08 May 2019

Accepted after revision: 19 July 2019

Publication Date:
12 August 2019 (online)


Abstract

Site-selective reactions of water-soluble biomolecules are being developed to produce efficient conversions in water and water­/solvent mixtures. This review focuses on the use of designs based on bis-bidentate chelation of large metal ions by diols to be acylated by a co-chelated water-stable reagent. Topics discussed include: 1. The preparation and properties of water-stable acyl phosphate monoesters and their reactions with diol-chelated metal ions. 2. Site-selective monoaminoacylation of 3′-terminal diols of RNA and their applications in protein engineering. 3. Site-selective monoacylation of sugars with acyl phosphate monoesters associated with metal ions, including lanthanum and lead. The combination of metal ion, 1,2-diol, and acyl phosphate monoester produces site-selective reactions in aqueous media­ that can produce a general approach to site-selective mono-(amino)acylation in RNA and carbohydrates.

1 Introduction

2 Synthetic Aminoacylation of tRNA

3 Activated Amino Acids in Water

4 Metal Ions and Their Effects on the Reactivity of Acyl Phosphate Monoesters

5 The Challenge of Site-Selective Acylation of Carbohydrates in Water

6 Conclusions and Prospects

 
  • References

  • 1 Kluger R. J. Org. Chem. 1964; 29: 2045
  • 3 Robertson SA, Ellman JA, Schultz PG. J. Am. Chem. Soc. 1991; 113: 2722
  • 4 Mulvey RS, Fersht AR. Biochemistry 1978; 17: 5591
  • 5 Mulvey RS, Fersht AR. Biochemistry 1977; 16: 4731
  • 6 Tzvetkova S, Kluger R. J. Am. Chem. Soc. 2007; 129: 15848
  • 7 Heckler TG, Chang LH, Zama Y, Naka T, Chorghade MS, Hecht SM. Biochemistry 1984; 23: 1468
  • 8 Noren C, Anthony-Cahill S, Griffith M, Schultz P. Science 1989; 244: 182
  • 9 Cameron LL, Wang SC, Kluger R. J. Am. Chem. Soc. 2004; 126: 10721
  • 10 Kluger R, Cameron LL. J. Am. Chem. Soc. 2002; 124: 3303
  • 11 Gray IJ, Kluger R. Carbohydr. Res. 2007; 342: 1998
  • 12 Gray IJ, Ren R, Westermann B, Kluger R. Can. J. Chem. 2006; 84: 620
  • 13 Duffy NH, Dougherty DA. Org. Lett. 2010; 12: 3776
  • 14 Her S, Kluger R. Org. Biomol. Chem. 2011; 9: 676
  • 15 Taiji M, Yokoyama S, Miyazawa T. Biochemistry 1983; 22: 3220
  • 16 Kluger R. Synlett 2000; 1708
  • 17 Kluger R, Tsui W.-C. Can. J. Biochem. 1981; 59: 810
  • 18 Kluger R, Tsui WC. Biochem. Cell Biol. 1986; 64: 434
  • 19 Wodzinska J, Kluger R. J. Org. Chem. 2008; 73: 4753
  • 20 Disabato G, Jencks WP. J. Am. Chem. Soc. 1961; 83: 4400
  • 21 Lipmann F. Adv. Enzymol. Relat. Subj. Biochem. 1946; 6: 231
  • 22 Lipmann F, Tuttle LC. J. Biol. Chem. 1944; 133: 571
  • 23 Jencks WP, Carriuolo J. J. Biol. Chem. 1959; 234: 1272
  • 24 Disabato G, Jencks WP. J. Am. Chem. Soc. 1961; 83: 4393
  • 25 Kluger R, Grant AS, Bearne SL, Trachsel MR. J. Org. Chem. 1990; 55: 2864
  • 26 Kluger R, Tsui W.-C. J. Org. Chem. 1980; 45: 2723
  • 27 Ueno H, Pospischil MA, Kluger R, Manning JM. Fed. Proc. 1985; 44: 1618
  • 28 Ueno H, Pospischil MA, Kluger R, Manning JM. J. Chromatogr. 1986; 359: 193
  • 29 Ueno H, Pospischil MA, Manning JM, Kluger R. Arch. Biochem. Biophys. 1986; 244: 795
  • 30 Ueno H, Pospischil MA, Manning JM. FASEB J. 1988; 2: A1026
  • 31 Manning LR, Manning JM. Biochemistry 2018; 57: 6816
  • 32 Xu AS, Labotka RJ, London RE. J. Biol. Chem. 1999; 274: 26629
  • 33 Grant A, Bearne S, Kluger R. Abstracts of Papers, Division of Biological Chemistry, 3rd Chemical Congress of North America and 195th National Meeting of the American Chemical Society, Toronto, Canada, June 5–10, 1988. Biochemistry (abstract 102-BIOL); 1988. 27, 3098
  • 34 Berg P. J. Biol. Chem. 1958; 233: 608
  • 35 Kluger R, Loo RW, Mazza V. J. Am. Chem. Soc. 1997; 119: 12089
  • 36 Dhiman RS, Opinska LG, Kluger R. Org. Biomol. Chem. 2011; 9: 5645
  • 37 Kern D, Lorber B, Boulanger Y, Giege R. Biochemistry 1985; 24: 1321
  • 38 Mejdoub H, Kern D, Giege R, Ebel JP, Boulanger Y, Reinbolt J. Biochemistry 1987; 26: 2054
  • 39 Sasai H, Suzuki T, Itoh N, Tanaka K, Date T, Okamura K, Shibasaki M. J. Am. Chem. Soc. 1993; 115: 10372
  • 40 Clarke PA, Arnold PL, Smith MA, Natrajan LS, Wilson C, Chan C. Chem. Commun. 2003; 2588
  • 41 Clarke PA, Kayaleh NE, Smith MA, Baker JR, Bird SJ, Chan C. J. Org. Chem. 2002; 67: 5226
  • 42 Xue J, Hua X, Li W, Yang L, Xu Y, Zhao G, Zhang G, Li C, Liu K, Chen J, Wu J. Carbohydr. Res. 2012; 361: 12
  • 43 Dimakos V, Taylor MS. Chem. Rev. 2018; 118: 11457
  • 44 Li Y, Kluger R. J. Org. Chem. 2018; 83: 7360
  • 45 Persson I, Lyczko K, Lundberg D, Eriksson L, Płaczek A. Inorg. Chem. 2011; 50: 1058
  • 46 Housecroft CE, Sharpe AG. Inorganic Chemistry, 2nd ed. Pearson Prentice Hall; Harlow: 2005
  • 47 Li Y, Kluger R. FACETS 2017; 2: 682; DOI: 10.1139/facets-2017-0047