Synthesis 2019; 51(19): 3625-3637
DOI: 10.1055/s-0037-1611851
paper
© Georg Thieme Verlag Stuttgart · New York

Heterogeneous Catalysis with Basic Compounds to Achieve the Synthesis and C–N Cleavage of Azetidin-2-ones under Microwave Irradiation

Adriana Galván
a   Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México   Email: mvazquez@ugto.mx
,
Fabiola N. de la Cruz
b   Departamento de Química Orgánica, Universidad Autónoma de Coahuila, Blvd. V. Carranza e Ing. José Cárdenas, 25280, Saltillo, Coahuila, México
,
Francisco Cruz
a   Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México   Email: mvazquez@ugto.mx
,
Merced Martínez
a   Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México   Email: mvazquez@ugto.mx
,
Clarisa Villegas Gomez
a   Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México   Email: mvazquez@ugto.mx
,
Yolanda Alcaraz
c   Departamento de Farmacia, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
,
José Manuel Domínguez
d   Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730, Ciudad de México, México
,
Francisco Delgado
e   Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas-IPN, Prolongación Carpio y Plan de Ayala S/N, 11340, Ciudad de México, México
,
Miguel A. Vázquez*
a   Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México   Email: mvazquez@ugto.mx
› Author Affiliations
The authors acknowledge financial support from CONACYT-SENER (fellowship grant 177007). We recognize the spectroscopy services provided by the National Laboratory of the Universidad de Guanajuato (UG-UAA-CONACYT Grant 260373). ACGC and FNCD received scholarships from CONACYT (551221 and 366790, respectively).
Further Information

Publication History

Received: 01 March 2019

Accepted after revision: 10 May 2019

Publication Date:
28 May 2019 (online)


Abstract

The synthesis of azetidin-2-ones with a completely heterogeneous catalysis is reported. The use of basic compounds as solid catalysts allowed for the synthesis of azetidin-2-ones under microwave irradiation without organic additives such as triethylamine. An excellent catalyst for this transformation was Mg-Al hydroxide (MAH). The present methodology offers the advantages of non-hazardous reaction conditions, short reaction times, high yields, and catalyst reusability. Different substitution groups were tested on the imines and acyl chlorides to explore the scope of the reaction. Unconventional N–C4 bond cleavage was detected in azetidin-2-ones. MAH was characterized by N2 adsorption–desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM).

Supporting Information

 
  • References

  • 1 Alcaide B, Almendros P. Chem. Rec. 2011; 11: 311
  • 2 Pitts CR, Lectka T. Chem. Rev. 2014; 114: 7930
  • 3 Arya N, Jagdale AY, Patil TA, Yeramwar SS, Holikatti SS, Dwivedi J, Shishoo CJ, Jain KS. Eur. J. Med. Chem. 2014; 74: 619
  • 4 Clader JW. J. Med. Chem. 2004; 47: 1
  • 5 Duane AB. Curr. Med. Chem. 2004; 11: 1873
  • 6 Adlington RM, Baldwin JE, Chen B, Cooper SL, McCoull W, Pritchard GJ, Howe TJ, Becker GW, Hermann RB, McNulty AM, Neubauer BL. Bioorg. Med. Chem. Lett. 1997; 7: 1689
  • 7 Annunziata R, Benaglia M, Cinquini M, Cozzi F, Puglisi A. Bioorg. Med. Chem. 2002; 10: 1813
  • 8 Banik BK, Banik I, Becker FF. Eur. J. Med. Chem. 2010; 45: 846
  • 9 Miller TM, Cleveland DW. Science 2005; 307: 361
  • 10 O’Boyle NM, Carr M, Greene LM, Keely NO, Knox AJ. S, McCabe T, Lloyd DG, Zisterer DM, Meegan MJ. Eur. J. Med. Chem. 2011; 46: 4595
  • 11 Borthwick AD, Weingarten G, Haley TM, Tomaszewski M, Wang W, Hu Z, Bedard J, Jin H, Yuen L, Mansour TS. Bioorg. Med. Chem. Lett. 1998; 8: 365
  • 12 Biondi S, Long S, Panunzio M, Qin WL. Curr. Med. Chem. 2011; 18: 4223
  • 13 Drawz SM, Bonomo RA. Clin. Microbiol. Rev. 2010; 23: 160
  • 14 France S, Weatherwax A, Taggi AE, Lectka T. Acc. Chem. Res. 2004; 37: 592
  • 15 Pérez-Llarena FJ, Bou G. Curr. Med. Chem. 2009; 16: 3740
  • 16 Brandi A, Cicchi S, Cordero FM. Chem. Rev. 2008; 108: 3988
  • 17 Jing-Fang W, Kuo-Chen C. Curr. Top. Med. Chem. 2013; 13: 1242
  • 18 Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D, Hawkey PM. Crit. Rev. Microbiol. 2009; 35: 81
  • 19 Sheldon RA, van Rantwijk F, van Langen LM, Wegman MA, Cao L, Janssen MH. A. In Synthesis of β-Lactam Antibiotics: Chemistry, Biocatalysis & Process Integration . Bruggink A. Springer Netherlands; Dordrecht: 2001
  • 20 Tahlan K, Jensen SE. J. Antibiot. 2013; 66: 401
  • 21 Worthington RJ, Melander C. J. Org. Chem. 2013; 78: 4207
  • 22 Troisi CG. L, Pindinelli E. In Heterocyclic Scaffolds I: β-Lactams . Springer; Berlin: 2010
  • 23 Furman B, Kałuza Z, Stencel A, Grzeszczyk B, Chmielewski M. In Heterocycles from Carbohydrate Precursors, Vol. 7 . El Ashry ES. H. Springer; Berlin: 2007: 101-132
  • 24 Benaglia M, Cinquini M, Cozzi F. Eur. J. Org. Chem. 2000; 563
  • 25 Stecko S, Furman B, Chmielewski M. Tetrahedron 2014; 70: 7817
  • 26 Debecker DP, Gaigneaux EM, Busca G. Chem. Eur. J. 2009; 15: 3920
  • 27 Karinen R, Vilonen K, Niemelä M. ChemSusChem 2011; 4: 1002
  • 28 Navajas A, Campo I, Moral A, Echave J, Sanz O, Montes M, Odriozola JA, Arzamendi G, Gandía LM. Fuel 2018; 211: 173
  • 29 Puértolas B, Imtiaz Q, Müller CR, Pérez-Ramírez J. ChemCatChem 2016; 9: 1579
  • 30 Yan K, Wu G, Jin W. Energy Technol. 2016; 4: 354
  • 31 Ishihara A, Ishida R, Ogiyama T, Nasu H, Hashimoto T. Fuel Process. Technol. 2017; 161: 17
  • 32 Kshirsagar SW, Patil NR, Samant SD. Synth. Commun. 2011; 41: 1320
  • 33 Li Q.-M, Zhang M, Wang C.-M, Zhu Y.-A, Zhou X.-G, Xie Z.-K. Mol. Catal. 2018; 446: 106
  • 34 Appaturi JN, Selvaraj M, Abdul Hamid SB. Microporous Mesoporous Mater. 2018; 260: 260
  • 35 Morales-Serna JA, Jaime-Vasconcelos MA, García-Ríos E, Cruz A, Angeles-Beltrán D, Lomas-Romero L, Negrón-Silva GE, Cárdenas J. RSC Adv. 2013; 3: 23046
  • 36 Ramani A, Chanda BM, Velu S, Sivasanker S. Green Chem. 1999; 1: 163
  • 37 Choudhary VR, Dumbre DK, Narkhede VS, Jana SK. Catal. Lett. 2003; 86: 229
  • 38 Zeng H.-Y, Wang Y.-J, Feng Z, You K.-Y, Zhao C, Sun J.-W, Liu P.-l. Catal. Lett. 2010; 137: 94
  • 39 Ionescu R, Pavel OD, Bırjegaa R, Zavoianu R, Angelescu E. Catal. Lett. 2010; 134: 309
  • 40 Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M. Microporous Mesoporous Mater. 2010; 128: 41
  • 41 Thomas AB, Paradkar O, Nanda RK, Tupe PN, Sharma PA, Badhe R, Kothapalli L, Banerjee A, Hamane S, Deshpande A. Green Chem. Lett. Rev. 2010; 3: 293
  • 42 Avasthi K, Yadav R, Khan T. J. Applicable Chem. 2014; 3: 1899
  • 43 Avasthi RY. K, Bohre A. Eur. Chem. Bull. 2015; 4: 268
  • 44 Babasaheb MG. L, Kendre V, Bhusare SR. Open J. Med. Chem. 2012; 2: 98
  • 45 Li Z, Zhu A, Yang J. J. Heterocycl. Chem. 2012; 49: 1458
  • 46 Cossio FP, Arrieta A, Sierra MA. Acc. Chem. Res. 2008; 41: 925
  • 47 Banik BK, Barakat KJ, Wagle DR, Manhas MS, Bose AK. J. Org. Chem. 1999; 64: 5746
  • 48 Pérez-Ruiz R, Sáez JA, Jiménez MC, Miranda MA. Org. Biomol. Chem. 2014; 12: 8428
  • 49 Alcaide B, Almendros P, Redondo MC. Org. Lett. 2004; 6: 1765
  • 50 Ramos R, Medellin-Castillo N, Jacobo-Azuara A, Mendoza J, Landin-Rodriguez LE, Martínez-Rosales J, Aragon-Piña A. J. Environ. Eng. Manage. 2008; 18: 301
  • 51 Kim JW, He J, Yamaguchi K, Mizuno N. Chem. Lett. 2009; 38: 920
  • 52 Vázquez MA, Landa M, Reyes L, Miranda R, Tamariz J, Delgado F. Synth. Commun. 2004; 34: 2705
  • 53 Bennett JS, Charles KL, Miner MR, Heuberger CF, Spina EJ, Bartels MF, Foreman T. Green Chem. 2009; 11: 166
  • 54 Pandey V, Chawla V, Saraf SK. Med. Chem. Res. 2012; 21: 844
  • 55 Miyamura H, Morita M, Inasaki T, Kobayashi S. Bull. Chem. Soc. Jpn. 2011; 84: 588