Synthesis 2019; 51(09): 1892-1912
DOI: 10.1055/s-0037-1611745
short review
© Georg Thieme Verlag Stuttgart · New York

π-Allylpalladium Complexes in Synthesis: An Update

Stefano Parisotto
,
Annamaria Deagostino*
Further Information

Publication History

Received: 19 December 2018

Accepted after revision: 04 February 2019

Publication Date:
20 March 2019 (online)


Abstract

This review aims to summarize the development of the chemistry of π-allylpalladium complexes both as intermediates and catalysts/reagents between 2013 and early 2109. Major attention has been devoted to the synthetic aspect of these versatile intermediates.

1 Introduction

2 π-Allylpalladium Complexes Generated from Allyl Electrophiles

2.1 Activated Allylic Compounds

2.2 Unactivated Allylic Compounds: Allylic Alcohols and Hydrocarbons

2.3 Total Syntheses

3 π-Allylpalladium Complexes Generated from Dienes

3.1 Conjugated Dienes

3.2 Allenes

4 π-Allylpalladium Complexes Exploited as Reactants and Precatalysts

4.1 Allylpalladium-Catalyzed Dehydrogenation

4.2 Allylpalladium-Catalyzed Synthesis of Alkenylboronic Esters

4.3 Allylpalladium-Based Precatalysts

5 Conclusions

 
  • References

  • 1 Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century. John Wiley & Sons; Chichester: 2004
  • 2 Bae S, Jang H.-L, Jung H, Joo JM. J. Org. Chem. 2015; 80: 690
  • 3 Lee JY, Ha H, Bae S, Han I, Joo JM. Adv. Synth. Catal. 2016; 358: 3458
  • 4 Erray I, Rezgui F, Oble J, Poli G. Synlett 2014; 25: 2196
  • 5 Mao ZY, Martini E, Prestat G, Oble J, Huang PQ, Poli G. Tetrahedron Lett. 2017; 58: 4174
  • 6 Roudesly F, Veiros LF, Oble J, Poli G. Org. Lett. 2018; 20: 2346
  • 7 Hamasaka G, Sakurai F, Uozumi Y. Tetrahedron 2015; 71: 6437
  • 8 Peganova TA, Kalsin AM, Ustynyuk NA, Vasil’ev AA. Russ. Chem. Bull. 2014; 63: 2305
  • 9 Braun J, Ariëns MI, Matsuo BT, de Vries S, van Wordragen ED. H, Ellenbroek BD, Vande Velde CM. L, Orru RV. A, Ruijter E. Org. Lett. 2018; 20: 6611
  • 10 Zhuo CX, You SL. Adv. Synth. Catal. 2014; 356: 2020
  • 11 Zhuo CX, Zhou Y, You SL. J. Am. Chem. Soc. 2014; 136: 6590
  • 12 Gao RD, Liu C, Dai LX, Zhang W, You SL. Org. Lett. 2014; 16: 3919
  • 13 Tu HF, Zhang X, Zheng C, Zhu M, You SL. Nature Catal. 2018; 1: 601
  • 14 Lee SY, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 15278
  • 15 Jiang X, Liu Y, Zhang L, Chen J, Cheng K, Yu C. Synlett 2018; 29: 251
  • 16 Sutivisedsak N, Dawadi S, Spilling CD. Tetrahedron Lett. 2015; 56: 3534
  • 17 Mistico L, Ay E, Huynh V, Bourderioux A, Chemla F, Ferreira F, Oble J, Perez-Luna A, Poli G, Prestat G. J. Organomet. Chem. 2014; 760: 124
  • 18 Ohmatsu K, Hara Y, Kusano Y, Ooi T. Synlett 2016; 27: 1047
  • 19 Dhanjee HH, Haley MW, McMahon TC, Buergler JF, Howell JM, Kobayashi Y, Fujiwara K, Wood JL. Tetrahedron 2016; 72: 3673
  • 20 Yao K, Liu D, Yuan Q, Imamoto T, Liu Y, Zhang W. Org. Lett. 2016; 18: 6296
  • 21 Trongsiriwat N, Li M, Pascual-Escudero A, Yucel B, Walsh PJ. Adv. Synth. Catal. 2019; 361: 502
  • 22 Wang X, Xu Y, Deng Y, Zhou Y, Feng J, Ji G, Zhang Y, Wang J. Chem. Eur. J. 2014; 20: 961
  • 23 Wang K, Chen S, Zhang H, Xu S, Ye F, Zhang Y, Wang J. Org. Biomol. Chem. 2016; 14: 3809
  • 24 Cai J, Zhang M, Zhao X. Eur. J. Org. Chem. 2015; 2015: 5925
  • 25 Chen Z.-S, Huang L.-Z, Jeon HJ, Xuan Z, Lee S.-g. ACS Catal. 2016; 6: 4914
  • 26 Srikanth G, Sharma GV. M, Ramakrishna KV. S. Org. Lett. 2015; 17: 4576
  • 27 Parisotto S, Deagostino A. Org. Lett. 2018; 20: 6891
  • 28 Diamante D, Gabrieli S, Benincori T, Broggini G, Oble J, Poli G. Synthesis 2016; 48: 3400
  • 29 Kerim MD, Jia S, Theodorakidou C, Prévost S, El Kaim L. Chem. Commun. 2018; 54: 10917
  • 30 Bauer JM, Peters R. Catal. Sci. Technol. 2015; 5: 2340
  • 31 Wei L, Xu S.-M, Zhu Q, Che C, Wang C.-J. Angew. Chem. Int. Ed. 2017; 56: 12312
  • 32 Wei L, Xiao L, Wang C.-J. Adv. Synth. Catal. 2018; 360: 4715
  • 33 Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
  • 34 Gumrukcu Y, de Bruin B, Reek JN. H. Chem. Eur. J. 2014; 20: 10905
  • 35 Li J, Yang S, Wu W, Qi C, Deng Z, Jiang H. Tetrahedron 2014; 70: 1516
  • 36 Yoshida M, Masaki E, Terumine T, Hara S. Synthesis 2014; 46: 1367
  • 37 Yoshida M. J. Org. Chem. 2017; 82: 12821
  • 38 Du Z, Yan Y, Fu Y, Wang K. Asian J. Org. Chem. 2016; 5: 812
  • 39 Bouhalleb G, Mhasni O, Poli G, Rezgui F. Tetrahedron Lett. 2017; 58: 2525
  • 40 Hirata G, Satomura H, Kumagae H, Shimizu A, Onodera G, Kimura M. Org. Lett. 2017; 19: 6148
  • 41 Zhang Y, Yin S.-C, Lu J.-M. Tetrahedron 2015; 71: 544
  • 42 Ma R, White MC. J. Am. Chem. Soc. 2018; 140: 3202
  • 43 Usuki Y, Deguchi T, Iio H. Chem. Lett. 2014; 43: 1882
  • 44 Ota K, Miyaoka H. Heterocycles 2015; 90: 442
  • 45 Parpal F, Pandolfi E, Heguaburu V. Tetrahedron Lett. 2017; 58: 1965
  • 46 Wu Z, Zhang J, Li Y, Zhang W. Tetrahedron Lett. 2017; 58: 2640
  • 47 Wu Z, Wen K, Zhang J, Zhang W. Org. Lett. 2017; 19: 2813
  • 48 Wen K, Wu Z, Chen B, Chen J, Zhang W. Org. Biomol. Chem. 2018; 16: 5618
  • 49 Bai L, Wang Y, Ge Y, Liu J, Luan X. Org. Lett. 2017; 19: 1734
  • 50 Adamson NJ, Hull E, Malcolmson SJ. J. Am. Chem. Soc. 2017; 139: 7180
  • 51 Park S, Malcolmson SJ. ACS Catal. 2018; 8: 8468
  • 52 Adamson NJ, Wilbur KC. E, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 2761
  • 53 Liu Y, Xie Y, Wang H, Huang H. J. Am. Chem. Soc. 2016; 138: 4314
  • 54 Banerjee D, Junge K, Beller M. Org. Chem. Front. 2014; 1: 368
  • 55 Li H, Fang X, Jackstell R, Neumann H, Beller M. Chem. Commun. 2016; 52: 7142
  • 56 Fang X, Li H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 9030
  • 57 Chen S.-S, Wu M.-S, Han Z.-Y. Angew. Chem. Int. Ed. 2017; 56: 6641
  • 58 Wu M.-S, Fan T, Chen S.-S, Han Z.-Y, Gong L.-Z. Org. Lett. 2018; 20: 2485
  • 59 Wu X, Lin H.-C, Li M.-L, Li L.-L, Han Z.-Y, Gong L.-Z. J. Am. Chem. Soc. 2015; 137: 13476
  • 60 Baiju TV, Vijayan A, Joseph N, Preethalayam P, Radhakrishnan KV, Suresh E, Yamamoto Y. Synlett 2014; 25: 359
  • 61 Saini V, O’Dair M, Sigman MS. J. Am. Chem. Soc. 2015; 137: 608
  • 62 Luo L, Zheng H, Liu J, Wang H, Wang Y, Luan X. Org. Lett. 2016; 18: 2082
  • 63 Wang Y, Li Y, Fan Y, Wang Z, Tang Y. Chem. Commun. 2017; 53: 11873
  • 64 Sardini SR, Brown MK. J. Am. Chem. Soc. 2017; 139: 9823
  • 65 Zhang X.-M, Yang J, Zhuang Q.-B, Tu Y.-Q, Chen Z, Shao H, Wang S.-H, Zhang F.-M. ACS Catal. 2018; 8: 6094
  • 66 Abu Deiab GI, Al-Huniti MH, Hyatt IF. D, Nagy EE, Gettys KE, Sayed SS, Joliat CM, Daniel PE, Vummalaneni RM, Morehead AT. Jr, Sargent AL, Croatt MP. Beilstein J. Org. Chem. 2017; 13: 384
  • 67 Simić MR, Petković MR, Jovanović PM, Tasić GD, Savić VM. J. Serb. Chem. Soc. 2017; 82: 1335
  • 68 Hampton CS, Harmata M. Org. Lett. 2014; 16: 1256
  • 69 He Y, Zheng Z, Liu Q, Song G, Sun N, Chai X. J. Org. Chem. 2018; 83: 12514
  • 70 He Y, Zhang X, Fan X. Chem. Commun. 2015; 51: 16263
  • 71 Rigamonti M, Prestat G, Broggini G, Poli G. J. Organomet. Chem. 2014; 760: 149
  • 72 Yan F, Liang H, Song J, Cui J, Liu Q, Liu S, Wang P, Dong Y, Liu H. Org. Lett. 2017; 19: 86
  • 73 Liang H, Yan F, Dong X, Liu Q, Wei X, Liu S, Dong Y, Liu H. Chem. Commun. 2017; 53: 3138
  • 74 Lippincott DJ, Linstadt RT. H, Maser MR, Gallou F, Lipshutz BH. Org. Lett. 2018; 20: 4719
  • 75 Parisotto S, Palagi L, Prandi C, Deagostino A. Chem. Eur. J. 2018; 24: 5484
  • 76 Zhu C, Yang B, Mai BK, Palazzotto S, Qiu Y, Gudmundsson A, Ricke A, Himo F, Bäckvall J.-E. J. Am. Chem. Soc. 2018; 140: 14324
  • 77 Bai T, Yang Y, Janes T, Song D, Guo Z. Tetrahedron 2017; 73: 5784
  • 78 Chen Y, Romaire JP, Newhouse TR. J. Am. Chem. Soc. 2015; 137: 5875
  • 79 Szewczyk SM, Zhao YZ, Sakai HA, Dube P, Newhouse TR. Tetrahedron 2018; 74: 3293
  • 80 Chen Y, Turlik A, Newhouse TR. J. Am. Chem. Soc. 2016; 138: 1166
  • 81 Zhao Y, Chen Y, Newhouse TR. Angew. Chem. Int. Ed. 2017; 56: 13122
  • 82 Huang D, Zhao YZ, Newhouse TR. Org. Lett. 2018; 20: 684
  • 83 Chen Y, Huang D, Zhao Y, Newhouse TR. Angew. Chem. Int. Ed. 2017; 56: 8258
  • 84 Schuppe AW, Huang D, Chen Y, Newhouse TR. J. Am. Chem. Soc. 2018; 140: 2062
  • 85 Murray SA, Luc EC. M, Meek SJ. Org. Lett. 2018; 20: 469
  • 86 Aparece MD, Gao C, Lovinger GJ, Morken JP. Angew. Chem. Int. Ed. 2019; 58: 592
  • 87 Viciu MS, Germaneau RF, Navarro-Fernandez O, Stevens ED, Nolan SP. Organometallics 2002; 21: 5470
  • 88 O’Brien CJ, Kantchev EA. B, Valente C, Hadei N, Chass GA, Lough A, Hopkinson AC, Organ MG. Chem. Eur. J. 2006; 12: 4743
  • 89 Hill LL, Crowell JL, Tutwiler SL, Massie NL, Hines CC, Griffin ST, Rogers RD, Shaughnessy KH, Grasa GA, Johansson Seechurn CC. C, Li H, Colacot TJ, Chou J, Woltermann CW. J. Org. Chem. 2010; 75: 6477
  • 90 Johansson Seechurn CC. C, Parisel SL, Colacot TJ. J. Org. Chem. 2011; 76: 7918
  • 91 Broekemier NW, Broekemier NC, Short RT, Palencia H. Eur. J. Chem. 2014; 5: 162
  • 92 Asensio JM, Andrés R, Gómez-Sal P, de Jesús E. Organometallics 2017; 36: 4191
  • 93 Handa S, Ibrahim F, Ansari TN, Gallou F. ChemCatChem 2018; 10: 4229
  • 94 Drost RM, Bouwens T, van Leest NP, de Bruin B, Elsevier CJ. ACS Catal. 2014; 4: 1349
  • 95 Bravo MJ, Favier I, Saffon N, Ceder RM, Muller G, Gómez M, Rocamora M. Organometallics 2014; 33: 771
  • 96 Huang J.-Q, Ding C.-H, Hou X.-L. J. Org. Chem. 2014; 79: 12010