Synthesis 2019; 51(13): 2705-2712
DOI: 10.1055/s-0037-1611732
special topic
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Amination of Aryl Sulfides and Sulfoxides with Azaarylamines of Poor Nucleophilicity

Ramendra Pratap
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   Email: yori@kuchem.kyoto-u.ac.jp
b   Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
,
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   Email: yori@kuchem.kyoto-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Numbers JP16H04109, JP18H04252, and JP18H04409. R.P. acknowledges the award of a JSPS Invitational Fellowship.
Further Information

Publication History

Received: 22 December 2018

Accepted after revision: 18 January 2019

Publication Date:
26 February 2019 (online)


Published as part of the Special Topic Amination Reactions in Organic Synthesis

Abstract

The amination of aryl sulfides and sulfoxides with azaarylamines is investigated using a palladium-N-heterocyclic carbene (NHC) complex. Because azaarylamines are less nucleophilic than anilines, more reactive diaryl sulfides and sulfoxides are found to be suitable coupling partners that liberate better leaving arenethiolate or arenesulfenate anions, instead of aryl methyl sulfides as reported previously.

Supporting Information

 
  • References


    • Selected reviews:
    • 1a Wolfe JP, Wagaw S, Marcoux J.-F, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 1b Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
    • 1c Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 1d Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 1e Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
    • 1f Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
    • 1g Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 1h Martín M, Rama RJ, Nicasio MC. Chem. Rec. 2016; 16: 1819
    • 1i Schranck J, Tlili A. ACS Catal. 2018; 8: 405

      For pioneering work on the amination of aryl mesylates, see:
    • 2a So CM, Zhou Z, Lau C, Kwong FY. Angew. Chem. Int. Ed. 2008; 47: 6402
    • 2b Fors BP, Watson DA, Biscoe MR, Buchwald SL. J Am. Chem. Soc. 2008; 130: 13552
  • 3 Of aryl phosphates, see: Huang J.-H, Yang L.-M. Org. Lett. 2011; 13: 3750

    • Of aryl sulfamates, see:
    • 4a Ramgren SD, Silberstein AL, Yang Y, Garg NK. Angew. Chem. Int. Ed. 2011; 50: 2171
    • 4b Ackermann L, Sandmann R, Song W. Org. Lett. 2011; 13: 1784
    • 4c Hie L, Ramgren SD, Mesganaw T, Garg NK. Org. Lett. 2012; 14: 4182
    • 4d Park NH, Teverovskiy G, Buchwald SL. Org. Lett. 2014; 16: 220
    • 4e Nathel NF. F, Kim J, Hie L, Jiang X, Garg NK. ACS Catal. 2014; 4: 3289
    • 4f Lavoie CM, MacQueen PM, Stradiotto M. Chem. Eur. J. 2016; 22: 18752
    • 4g MacQueen PM, Stradiotto M. Synlett 2017; 28: 1652

      Of aryl carbamates, see:
    • 5a Mesganaw T, Silberstein AL, Ramgren SD, Nathel NF. F, Hong X, Liu P, Garg NK. Chem. Sci. 2011; 2: 1766
    • 5b Schranck J, Furer P, Hartmann V, Tlili A. Eur. J. Org. Chem. 2017; 3496 ; see also references 4c and 4g

      Of aryl esters, see:
    • 6a Shimasaki T, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2010; 49: 2929
    • 6b Yue H, Guo L, Liu X, Rueping M. Org. Lett. 2017; 19: 1788

      Of aryl ethers, see:
    • 7a Tobisu M, Shimasaki T, Chatani N. Chem. Lett. 2009; 38: 710
    • 7b Tobisu M, Yasutome A, Yamakawa K, Shimasaki T, Chatani N. Tetrahedron 2012; 68: 5157
    • 7c Li J, Wang Z.-X. Org. Lett. 2017; 19: 3723

      For reviews, see:
    • 8a Dubbaka SR, Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
    • 8b Wang L, He W, Yu Z. Chem. Soc. Rev. 2013; 42: 599
    • 8c Modha SG, Mehta VP, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
    • 8d Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
    • 8e Gao K, Otsuka S, Baralle A, Nogi K, Yorimitsu H, Osuka A. J. Synth. Org. Chem. Jpn. 2016; 74: 1119
    • 8f Ortgies DH, Hassanpour A, Chen F, Woo S, Forgione P. Eur. J. Org. Chem. 2016; 408
    • 8g Otsuka S, Nogi K, Yorimitsu H. Top. Curr. Chem. 2018; 376: 13
    • 8h Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
    • 8i Li Y, Pu J, Jiang X. Org. Lett. 2014; 16: 2692 ; and references cited therein

      For very recent examples from our group, see:
    • 9a Saito H, Nogi K, Yorimitsu H. Chem. Lett. 2017; 46: 1122
    • 9b Vasu D, Hausmann JN, Saito H, Yanagi T, Yorimitsu H, Osuka A. Asian J. Org. Chem. 2017; 6: 1390
    • 9c Saito H, Nogi K, Yorimitsu H. Synthesis 2017; 49: 4769
    • 9d Yamamoto K, Nogi K, Yorimitsu H. ACS Catal. 2017; 7: 7623
    • 9e Gao K, Yamamoto K, Nogi K, Yorimitsu H. Synlett 2017; 28: 2956
    • 9f Yoshida Y, Nogi K, Yorimitsu H. Synlett 2017; 28: 2561
    • 9g Minami H, Otsuka S, Nogi K, Yorimitsu H. ACS Catal. 2018; 8: 579
    • 9h Yoshida Y, Nogi K, Yorimitsu H. Org. Lett. 2018; 20: 1134
    • 9i Otsuka S, Nogi K, Yorimitsu H. Angew. Chem. Int. Ed. 2018; 57: 6653
    • 9j Uno D, Minami H, Otsuka S, Nogi K, Yorimitsu H. Chem. Asian J. 2018; 13: 2397
    • 9k Minami H, Nogi K, Yorimitsu H. Heterocycles 2018; 97: 998
    • 10a Sugahara T, Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
    • 10b Gao K, Yorimitsu H, Osuka A. Eur. J. Org. Chem. 2015; 2678
    • 11a Kantchev EA. B, Ying JY. Organometallics 2009; 28: 289
    • 11b Peh G.-R, Kantchev EA. B, Er J.-C, Ying JY. Chem. Eur. J. 2010; 16: 4010
  • 12 Ngassa FN, DeKorver KA, Melistas TS, Yeh EA.-H, Lakshman MK. Org. Lett. 2006; 8: 4613 ; and references cited therein
    • 13a Čerňa I, Pohl R, Klepetářová B, Hocek M. Org. Lett. 2006; 8: 5389
    • 13b Čerňa I, Pohl R, Hocek M. Chem. Commun. 2007; 4729
    • 13c Storr TE, Firth AG, Wilson K, Darley K, Baumann CG, Fairlamb IJ. S. Tetrahedron 2008; 64: 6125
    • 13d Liang Y, Wnuk SF. Molecules 2015; 20: 4874
  • 14 Boucherle B, Bertrand J, Maurin B, Renard B.-L, Fortuné A, Tremblier B, Becq F, Norez C, Déecout JL. Eur. J. Med. Chem. 2014; 83: 455
    • 15a Hampel T, Ruppenthal S, Sälinger D, Brückner R. Chem. Eur. J. 2012; 18: 3136
    • 15b Olah GA, Marinez ER, Surya Prakash GK. Synlett 1999; 1397
    • 15c Sheppard WA, Foster SS. J. Fluorine Chem. 1972; 2: 73
  • 16 Chen J, Natte K, Man NY. T, Stewart SG, Wu X.-F. Tetrahedron Lett. 2015; 56: 4843
  • 17 Maiti D, Fors BP, Henderson JL, Nakamura Y, Buchwald SL. Chem. Sci. 2011; 2: 57
  • 18 Wang D, Kuang D, Zhang F, Liu Y, Ning S. Tetrahedron Lett. 2014; 55: 7121
  • 19 Shaw JW, Grayson DH, Rozas I. ARKIVOC 2014; (ii): 161
  • 20 Shaw JW, Grayson DH, Rozas I. Eur. J. Org. Chem. 2014; 3565
  • 21 Dhanabal T, Sangeetha R, Mohan PS. Tetrahedron 2006; 62: 6258
    • 22a Meir EG. V, Wang B. US Patent US9062072B2, 2015
    • 22b Mazu TK, Etukala JR, Zhu XY, Jacob MR, Khan SI, Walker LA, Ablordeppey SY. Bioorg. Med. Chem. 2011; 19: 524
  • 23 Allu S, Swamy KC. K. Adv. Synth. Catal. 2015; 357: 2665