Synlett 2019; 30(12): 1479-1483
DOI: 10.1055/s-0037-1611560
letter
© Georg Thieme Verlag Stuttgart · New York

The Allylic Acetoxylation of 1,1-Disubstituted Alkenes Catalyzed by a Palladium(II)/Monothiadiazole Ligand System

Xiaohan Li
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Bin Sun
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Jin Yang
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Xun Zhang
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Jiayang Wang
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Xiaohui Zhuang
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Can Jin*
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21676252).
Further Information

Publication History

Received: 08 March 2019

Accepted after revision: 04 May 2019

Publication Date:
05 June 2019 (online)


Abstract

A palladium(II)/monothiadiazole ligand catalytic system and its application in catalyzing the acetoxylation of 1,1-disubstituted alkenes have been developed. With this newly designed monothiadiazole thioether ligand, the reaction showed a broad scope with respect to 1,1-disubstituted olefins, giving the corresponding products in yields of 30–86%.

Supporting Information

 
  • References and Notes

    • 2a Marín-Barrios R, Guerra RF, García-Cabeza AL, Moreno-Dorado FJ, Massanet GM. Tetrahedron 2012; 68: 1105
    • 2b Stallcup WD, Hawkins JE. J. Am. Chem. Soc. 1942; 64: 1807
  • 3 García-Cabeza AL, Marín-Barrios R, Moreno-Dorado FJ, Ortega MJ, Massanet GM, Guerra FM. Org. Lett. 2014; 16: 1598
    • 4a Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970
    • 4b Reed SA, White MC. J. Am. Chem. Soc. 2008; 130: 3316
    • 4c Lin S, Song C.-X, Cai G.-X, Wang W.-H, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 12901
    • 4d Young AJ, White MC. J. Am. Chem. Soc. 2008; 130: 14090
    • 4e Braun M.-G, Doyle AG. J. Am. Chem. Soc. 2013; 135: 12990
    • 4f Osberger TJ, White MC. J. Am. Chem. Soc. 2014; 136: 11176
    • 4g Howell JM, Liu W, Young AJ, White MC. J. Am. Chem. Soc. 2014; 136: 5750
    • 4h Pattillo CC, Strambeanu II, Calleja P, Vermeulen NA, Mizuno T, White MC. J. Am. Chem. Soc. 2016; 138: 1265
    • 5a Henderson H, Check CT, Proust N, Stambuli JP. Org. Lett. 2010; 12: 824
    • 5b Le C, Kunchithapatham K, Henderson WH, Check CT, Stambuli JP. Chem. Eur. J. 2013; 19: 11153
  • 6 Uemura S, Fukuzawa S, Toshimitsu A, Okano M. Tetrahedron Lett. 1982; 23: 87
    • 7a Senthil K, Akiba U, Fujiwara K, Hamada F, Kondo Y. Ind. Eng. Chem. Res. 2017; 56: 1036
    • 7b Zheng Y, Du M, Li J.-R, Zhang R.-H, Bu X.-H. Dalton Trans. 2003; 1509
    • 7c Deckert C, Bittner D, Carrella LM, Schollmeyer D, Rentschler E. Eur. J. Inorg. Chem. 2016; 1738
    • 7d Ahmed SA, Al-Janabi AS. M. Orient. J. Chem. 2018; 34: 1787 ; DOI: 10.13005/ojc/3404011
  • 8 Thiery E, Aouf C, Belloy J, Harakat D, Le Bras J, Muzart J. J. Org. Chem. 2010; 75: 1771
  • 9 Allylic Acetates 2ar; General Procedure To a stirred mixture of Pd(OAc)2 (0.05 equiv), ligand L6 (0.05 equiv), Et3N (2.0 equiv), and 1,4-benzoquinone (2.0 equiv) in AcOH (1 mL) was added the appropriate substrate (1.00 mmol) in one portion at r.t. The resultant mixture was stirred at 40 °C for 12–24 h then cooled to r.t. The reaction was quenched with sat. aq NaHSO3, and the mixture was diluted with H2O and CH2Cl2. The organic layer was separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure to afford a brown oil that was purified by column chromatography (silica gel, CH2Cl2–hexane or EtOAc–hexane) to afford the allylic acetate as a colorless to pale-yellow oil or solid. 2-[(2R,8R,8aS)-8,8a-Dimethyl-6-oxo-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl]prop-2-en-1-yl Acetate (2n) Prepared according to the general procedure from (+)-nootkatone (218 mg, 1.00 mmol). The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:10)] to give a white solid; yield: 168 mg (61%, 0.61 mmol). 1H NMR (500 MHz, CDCl3): δ = 5.75 (s, 1 H), 5.07 (s, 1 H), 4.97 (s, 1 H), 4.60–4.54 (m, 2 H), 2.50 (m, 1 H), 2.37 (m, 2 H), 2.28–2.18 (m, 2 H), 2.09 (s, 3 H), 1.99 (m, 4 H), 1.40–1.32 (m, 1 H), 1.09 (s, 3 H), 0.95 (d, J = 6.8 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 199.3, 170.6, 169.7, 147.3, 124.8, 111.8, 66.0, 44.1, 41.9, 40.3, 39.3, 36.3, 32.9, 31.7, 20.9, 16.7, 14.8. HRMS (EI-TOF); m/z [M – C2H2O2] calcd for C15H22O: 218.1678; found: 218.1671.
    • 10a Mann SE, Aliev AE, Tizzard GJ, Sheppard TD. Organometallics 2011; 30: 1772
    • 10b Mann SE, Benhamou L, Sheppard TD. Synthesis 2015; 47: 3079
    • 10c Grennberg H, Bäckvall J.-E. Chem. Eur. J. 1998; 4: 1083
    • 10d Engelin C, Jensen T, Rodriguez-Rodriguez S, Fristrup P. ACS Catal. 2013; 3: 294
    • 10e Engelin CJ, Fristrup P. Molecules 2011; 16: 951
    • 11a Lin B.-L, Labinger JA, Bercaw JE. Can. J. Chem. 2009; 87: 264
    • 11b Ammann SE, Rice GT, White MC. J. Am. Chem. Soc. 2014; 136: 10834
    • 11c Ammann SE, Liu W, White MC. Angew. Chem. Int. Ed. 2016; 55: 9571
    • 11d Ma R, White MC. J. Am. Chem. Soc. 2018; 140: 3202