Synthesis 2019; 51(17): 3295-3304
DOI: 10.1055/s-0037-1611530
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 1-Palmitoyl-2-((E)-9- and (E)-10-nitrooleoyl)-sn-glycero-3-phosphatidylcholines

Alexander Lehr
a   Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
,
Andrea Frank
a   Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
,
Winfried Münch
a   Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
,
Ulrich Dietz
b   DKD HELIOS Klinik Wiesbaden, Kardiologie, Regerstr. 1, 65193 Wiesbaden, Germany
,
Udo Nubbemeyer*
a   Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
› Author Affiliations
Further Information

Publication History

Received: 08 March 2019

Accepted after revision: 06 April 2019

Publication Date:
08 May 2019 (online)


Dedicated to Prof. Dr. Hans-Ulrich Reißig on the occasion of his 70th birthday

Abstract

Extensive investigation of nitrated phospholipids in connection with various biologically important processes requires reliable access to suitable material. A selective chemical synthesis introducing a defined nitrofatty acid at the sn-2 position of a 2-lyso sn-glycero-3-phosphatidylcholine was developed. Given that the nitroalkene moiety of both reactant nitrofatty acid derivative and the product esters is characterised by particular sensitivity to nucleophile addition and, depending on the intermediate, subsequent olefin isomerisation and retro-Henry-type reaction, a reliable two-step ester formation was introduced. The activation of the nitrofatty acid succeeded after reaction with trichlorobenzoyl chloride, and the mixed anhydride could be isolated via extractive work-up. Subsequent reaction with 1-palmitoyl-2-lyso-sn-glycero-3-phosphatidylcholine enabled the sn-2 esterification to be achieved with high yield by using a minimum of reagents, avoiding the formation of side products and facilitating final isolation and purification.

Supporting Information

 
  • References

  • 1 Dedon PC, Tannenbaum SR. Arch. Biochem. Biophys. 2004; 423: 12
    • 2a Baker PR, Schopfer FJ, O’Donnell VB, Freeman BA. Free Radical Biol. Med. 2009; 46: 989
    • 2b Freeman BA, Baker PR, Schopfer FJ, Woodcock SR, Napolitano A, d’Ischia M. J. Biol. Chem. 2008; 283: 15515
    • 3a Baker PR, Schopfer FJ, Sweeney S, Freeman BA. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11577
    • 3b Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groegr AL, Batthyany C, Sweeney S, Long MH, Illes KE, Baker LM. S, Branchaud BP, Chen YE, Freeman BA. J. Biol. Chem. 2005; 280: 42464
    • 3c Tshikas D, Zoerner AA, Mitschke A, Gutzki FM. Lipids 2009; 44: 855
    • 3d Tsikas D, Zoerner AA, Jordan J. Biochim. Biophys. Acta 2011; 1811: 694
  • 4 Fazzari M, Trostchansky A, Schopfer FJ, Salvatore FJ, Sanchz-Calvo B, Vitturi D, Valderrama R, Barroso JB, Radi R, Freeman BA, Rubbo H. PLoS One 2014; 9: e84884
  • 5 Trostchansky A, Rubbo H. Free Radical Biol. Med. 2008; 44: 1887
    • 6a Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T, Baker PR, Batthyany C, Chacko BK, Feng X, Patel RP, Agarwal A, Freeman BA, Chen YE. J. Biol. Chem. 2006; 281: 35686
    • 6b Khoo NK, Freeman BA. Curr. Opin. Pharmacol. 2010; 10: 179
    • 7a Melo T, Domingues P, Ferreira R, Milic I, Fedorova M, Santos SM, Segundo MA, Domingues MR. M. Anal. Chem. 2016; 88: 2622
    • 7b Melo T, Domingues P, Ribeiro-Rodrigues TM, Girao TM, Segundo H, Domingues MR. M. Free Radical Biol. Med. 2017; 106: 219
  • 8 Melo T, Marques SS, Ferreira I, Cruz MT, Domingues P, Segundo MA, Domingues MR. M. Lipids 2018; 53: 117
    • 9a Bittmannn R. In Phospholipids Handbook . Cevc G. Marcel Dekker; New York: 1995: 141-232
    • 9b D’Arrigo P, Servi S. Molecules 2010; 15: 1354
    • 9c Xia J, Hui YZ. Tetrahedron: Asymmetry 1997; 8: 451
    • 11a Lampkins AJ, O’Neil EJ, Smith BD. J. Org. Chem. 2008; 73: 6053
    • 11b Gu X, Sun M, Gugiu B, Hazen S, Crabb JW, Salomon RG. J. Org. Chem. 2003; 68: 3749
    • 11c Picq M, Han Y, Lagarde M, Doutheau A, Nemoz G. J. Med. Chem. 2002; 45: 1678
    • 11d Jung ME, Berliner JA, Koroniak L, Gugiu GB, Watson AD. Org. Lett. 2008; 10: 4207
    • 12a Vaz S, Persson M, Svensson I, Adlercreutz P. Biocatal. Biotransform. 2000; 18: 1
    • 12b Adlercreutz D, Budde H, Wehtje E. Biotechnol. Bioeng. 2002; 78: 403
    • 12c Lindberg J, Ekeroth J, Konradsson P. J. Org. Chem. 2002; 67: 194
    • 13a Woodcock SR, Bonacci G, Gelhaus SL, Schopfer FJ. Free Radical Biol. Med. 2013; 59: 14
    • 13b Woodcock SR, Salvatore SR, Bonacci G, Schopfer FJ, Freeman BA. J. Org. Chem. 2014; 79: 25
    • 13c Lim DG, Sweeney S, Bloodsworth A, White CR, Chumley PH, Krishna NR, Schopfer FJ, O’Donnell VB, Eiserich JP, Freeman BA. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 15941
    • 13d O’Donnell VB, Eiserich JP, Bloodsworth A, Chumley PH, Kirk M, Barnes S, Darley-Usmar V.-M, Freeman BA. Methods Enzymol. 1999; 301: 454
  • 14 The stereoselective nitration of olefins with AgNO2 and TEMPO developed by Maiti and co-workers was tested. Such an adapted reaction starting from oleic acid delivered a 3:3:1:1 mixture of (E)-9-nitro 4 and (E)-10-nitrooleic acid 5 as well as the corresponding Z isomers as minor products. Laborious HPLC processes were necessary do separate the E isomers (small scale). For more detailed information, see the Supporting Information: Maity S., Manna S., Rana S., Naveen T., Mallick A., Maiti D.; J. Am. Chem. Soc.; 2013, 135: 3355
    • 15a Gorczynski MJ, Huang J, King BS. Org. Lett. 2006; 8: 2305
    • 15b Woodcock SR, Marwitz AJ. V, Bruno P, Branchaud BP. Org. Lett. 2006; 8: 3931
    • 15c Hock KJ, Grimmer J, Göbel D, Gasaya GG. T, Roos J, Maucher IV, Kühn B, Fettel J, Maier TJ, Manolikakes G. Synthesis 2017; 49: 615
    • 15d Gorczynski MJ, Smitherman PK, Akiyama TE, Wood HB, Berger JP, King SB, Morrow CS. J. Med. Chem. 2009; 52: 4631
    • 15e Zanoni G, Bendjeddou MV. L, Porta A, Bruno P, Vidari G. J. Org. Chem. 2010; 75: 8311
    • 15f Dunny E, Evans P. J. Org. Chem. 2010; 75: 5334

      According reported procedures, more or less complete consumption was achieved by using short-chain saturated nitroalkanes and aldehydes, see:
    • 16a Denmark SE, Kesler BS, Moon Y.-C. J. Org. Chem. 1992; 57: 4912
    • 16b Wollenberg RH, Miller SJ. Tetrahedron Lett. 1978; 3219 . In contrast, long-chain aldehydes and nitroalkanes required excess of one reactant to enforce complete conversion of the minor compound (ref. 15c). Otherwise, the reaction stops, reaching a scale-dependent equilibrium releasing varying amounts of reactants 6 and 7 (according NMR and TLC analyses)
  • 17 Acetates 10a are mentioned as intermediates in the literature (→15a). For the first isolation, characterization and data of 10a and 10b see the Supporting Information
  • 18 King and co-workers (Ref. 15a) reported a 61% yield of 9 via three steps (start: 6/7 = 2:1). In our hands, 45 mmol scale sequences gave 24% of alkene 9 and 5.3% of acetate 10a (start: 6/7 = 1:1). However, retro-Henry reaction predominated, leading to the regeneration of 6 and 7. In contrast, 4 mmol scaled sequences gave 54% of 9 and 14% of 10a (start: 6/7 = 1:1). For selected procedures and data see the Supporting Information
  • 19 Since treatment of nitroalkenyl ester 9 with DBU and related bases caused some C9/C10 to C10/C11 double-bond migration delivering nitroallyester 11, the conversion of acetate 10 into nitroalkene 11 might also occur as a two-step sequence of β-elimination and isomerization
  • 20 Additional experiments to induce a C10/C11→C9/C10 double-bond migration upon treatment of nitroallyl ester 11 with various bases delivered no nitroalkene 9. In most attempts, ketoester 12 (Nef reaction) was found as the major product. For selected procedures and data see the Supporting Information
  • 21 For nucleophile addition to nitroalkenes, see: Turell L, Vitturi DA, Cotino EL, Lebrado L, Möller MN, Sagasti C, Salvatore SR, Woodcock SR, Alvarez B, Schopfer FJ. J. Biol. Chem. 2017; 292: 1145
  • 22 Bielitza M, Pietruszka J. Chem. Eur. J. 2013; 19: 8300
    • 23a Mahdi J, Ankati H, Gregory J, Tenner B, Biehl ER. Tetrahedron Lett. 2011; 52: 2594
    • 23b Kolmakov KA. Can. J. Chem. 2007; 85: 1070
  • 24 For isolation and some spectroscopic data of a single 2,4,6-trichlorobenzoylcarboxylate, see: Okuno Y, Isomura S, Nishibayashi A, Hosoi A, Fukuyama K, Ohba M, Takeda K. Synth. Commun. 2014; 44: 2854

    • The DCC/DMAP methodology had been successfully applied to introduce ω-functionalized fatty acid substituents including acetals, silyl ethers, protected amines, etc.25a–e An excess of DCC was always used, acid/PPC 3 ratios involved varied from 1:1 to 3:1, yields of up to 95% were given. Further publications showed that short reaction times and high yields of sn-2 esters often required acid/PPC 3 ratios of up to 10:1.25f–i Alternatively, excess of PPC 3 has been used to react with peptide-type acid derivatives.
    • 25a Deng Y, Salomon RG. J. Org. Chem. 1998; 63: 7789
    • 25b Deng Y, Salomon RG. J. Org. Chem. 2000; 65: 6660
    • 25c Sun M, Deng Y, Batyreva E, Sha W, Salomon RG. J. Org. Chem. 2002; 67: 3575
    • 25d Mesaros C, Gugiu BG, Zhou R, Lee SH, Choi J, Laird J, Blair RI, Salomon AG. Chem. Res. Toxicol. 2010; 23: 516
    • 25e Gu X, Zhang W, Choi J, Li W, Chen X, Lauird JM, Salomon RG. Chem. Res. Toxicol. 2011; 24: 1080
    • 25f Hébert N, Beck A, Lennox RB, Just G. J. Org. Chem. 1992; 57: 1777
    • 25g Menger FM, Wong Y.-L. J. Org. Chem. 1996; 61: 7382
    • 25h Haidekker MA, Brady T, Wen K, Okada C, Stevens HY, Snell JM, Frangos JA, Theodorakis EA. Bioorg. Med. Chem. 2002; 10: 3627
    • 25i Gliszczyñska A, Niezgoda N, Gladkowski W, Czarnecka M, Świtalska M, Wietrzyk J. PloSOne 2016; 11: e0157278

    • For DCC/DMAP and alternative procedures, see:
    • 25j Li G, Bittman R. Tetrahedron Lett. 2000; 41: 6737
    • 25k Huang Z, Szoka FC. Jr. J. Am. Chem. Soc. 2008; 130: 15702
    • 25l Niezgoda N, Gliszczyñska A, Gladkowski W, Kempinska K, Wietrzyk J, Wawrzenczyk C. Austr. J. Chem. 2015; 68: 1065
    • 25m For DIC/DMAP, see: Budin I, Devaraj NK. J. Am. Chem. Soc. 2012; 134: 751
    • 25n For EDC/DMAP, see: Scheinkoenig J, Spiteller G. Liebigs Ann. Chem. 1993; 121
  • 26 Incomplete ester formation indicated the presence of residual activated nitrooleic acid 4. Simple cleavage of the reaction mixture regenerated reactant acid 4, separation of which from the product phosphatides proved difficult despite HPLC techniques. In contrast, methanolysis of the reaction induced methyl nitrooleate 9 generation. Separation and recycling of methyl ester 9 was less cumbersome, enabling the resulting phosphatides to be characterised. For details see the Supporting Information.

    • Significant rate enhancement was reported, supporting the DCC/DMAP esterification by glass bead addition and sonication. Nearly complete ester formation was achieved after hours at ambient temperature, but again excess of acid proved to be necessary (PPC 3/acid = 1:2–5) to afford high yields (up to 95%)
    • 27a Rosseto R, Hajdu J. Tetrahedron Lett. 2005; 46: 2941
    • 27b Rosseto R, Nibak N, DeOcampo R, Shah T, Gabrielian A, Hajdu J. J. Org. Chem. 2007; 72: 1691
    • 27c Rosseto R, Hajdu J. Chem. Phys. Lipids 2010; 163: 110
    • 27d Wang M, Pinnamaraju S, Ranganathan R, Hajdu J. Chem. Phys. Lipids 2013; 172-173: 78
    • 27e Rosseto R, Hajdu J. Chem. Phys. Lipids 2014; 183: 110
    • 27f O’Neil EJ, DiVittorio KM, Smith BD. Org. Lett. 2007; 9: 199
    • 27g McNally BA, O’Neil EJ, Nguyen A, Smith BD. J. Am. Chem. Soc. 2008; 130: 17274
    • 27h For DIC/DMAP, see: Turner WW, Hartvigsen K, Boullier A, Montano EN, Witztum JL, Vannieuwenhze MS. J. Med. Chem. 2012; 55: 8178
  • 28 As shown in Scheme 3, β-elimination starting from acetate 10a/b delivered olefin regioisomers 9 and 11. Probably, an analogous sequence followed. For data concerning side product 22, see the Supporting Information.
  • 29 Similar results have been found during the synthesis of nitrooleic acid 9. For details see Scheme 3, ref. 20, and the Supporting Information.

    • Successful PPC sn-2 ester formations have been reported using carboxylic acids activated in situ involving the Yamaguchi methodology (mixed anhydrides). Originally, work-up problems using the standard DCC/DMAP procedure were avoided. Furthermore, enone substituted carboxylic acids (Michael acceptors) have been successfully reacted in PPC sn-2 esterifications. Standard PPC/acid ratios used varied from 1:1 to 1:2–3, and high yields were reported. For DCB/Me-imidazole, see:
    • 30a Guimond-Tremblay J, Gagnon M.-C, Pineault-Maltais J.-A, Turotte V, Auger M, Paquin J.-F. Org. Biomol. Chem. 2012; 10: 1145

    • For TCB, see:
    • 30b Acarya HP, Kobayashi Y. Angew. Chem. Int. Ed. 2005; 44: 3481; Angew. Chem. 2005, 117, 3547
    • 30c Acharya HP, Kobayashi Y. Tetrahedron Lett. 2005; 46: 8435
    • 30d Jung ME, Berliner JA, Angst D, Yue D, Koroniak L, Watson AD, Li R. Org. Lett. 2005; 7: 3933

    • For acylation of carbohydrates, see:
    • 30e Huerta-Angeles G, Bobek M, Privkopová E, Smejkalová D, Velebný V. Carbohydr. Polym. 2014; 111: 883
    • 30f van der Kaaden M, Breukink E, Pieters RJ. Beilstein J. Org. Chem. 2012; 8: 732
  • 31 The separation of product 1, residual acid 4 and DMAP or methyl imidazole was always problematic. Conversion of remaining acid 4 into the corresponding methyl ester 9 facilitated the purification of PNOPC 1 and recycling of 9. For details see the Supporting Information.
  • 32 Weimin D, Xia L, Jiaqi M, Shuang L, Gang D, Shihui L, Junxiang H. CN105837652, 2016

    • For data of 24 see the Supporting Information. Several 1,3-diacyl glycero-2-phosphatidylcholines are known as artificial compounds. In general, such compounds can be obtained via chemical syntheses. Biological data are rare in the literature.
    • 33a Zaffalon P.-L, Zumbuehl A. Synthesis 2011; 778
    • 33b Mansfeld J, Brandt W, Haftendorn R, Schöps R, Ulbrich-Hofmann R. Chem. Phys. Lipids 2011; 164: 196
    • 33c Woods EC, Yee NA, Shen J, Bertozzi CR. Angew. Chem. 2015; 127: 16008

      According the literature, cyclic, homo and mixed anhydrides have been employed in PPC sn-2 ester formations. Several authors reported high yields upon running such conversions, but the less pronounced reactivity of the anhydrides often required the use of an excess of the acid derivative and long reaction times; lower yields of 40 to 80% can be regarded as standard. The use of mixed anhydrides promised the best compromise with respect to stability and reactivity of the nitrooleic acid derivative. For cyclic anhydrides, see:
    • 34a Igarashi R, Tsutsumi Y, Fujii H, Tsunoda S, Ochiai A, Takenaga M, Morizawa Y, Mayumi T, Mizushima Y. J. Pharm. Pharmacol. 1997; 49: 113
    • 34b Kogure K, Nakashima S, Tsuchie A, Tokumura A, Fukuzawa K. Chem. Phys. Lipids 2003; 126: 29

    • For homo anhydrides, see:
    • 34c Regen SL, Singh A, Oehme G, Singh M. J. Am. Chem. Soc. 1982; 104: 791
    • 34d Ali S, Bittman R. Chem. Phys. Lipids 1989; 50: 11
    • 34e Akama K, Yano Y, Tokuyama S, Hosoi F, Omichi H. J. Mater. Chem. 2000; 10: 1047
    • 34f Wang P, Blank DH, Spencer TA. J. Org. Chem. 2004; 69: 2693
    • 34g D’Arrigo P, Mele A, Rossi C, Tessaro D, Servi S. J. Am. Oil Chem. Soc. 2008; 85: 1005
    • 34h D’Arrigo P, Fasoli E, Pedrocchi-Fantoni G, Rossi C, Saraceno C, Tessaro D, Servi S. Chem. Phys. Lipids 2007; 147: 113

    • For mixed anhydrides, see:
    • 34i Song X, Geiger C, Farahat M, Perlstein J, Whitten DG. J. Am. Chem. Soc. 1997; 119: 12481
    • 34j Rose TM, Prestwich GD. Org. Lett. 2006; 8: 2575

    • For imides, see:
    • 34k Frederiksen SB, Dolle V, Yamamoto M, Naketami Y, Goeldner M, Ourisson G. Angew. Chem. Int. Ed. Engl. 1994; 33: 1176; Angew. Chem. 1994, 106, 1230

    • For DCC/HOBt, see:
    • 34l Cuccia M, Beck H, Just L. Chem. Eur. J. 2000; 6: 4379