Synthesis 2018; 50(24): 4765-4776
DOI: 10.1055/s-0037-1611278
short review
© Georg Thieme Verlag Stuttgart · New York

Direct Trifluoromethylthiolation Reactions Involving Radical Processes

Anne-Laure Barthelemy
,
Emmanuel Magnier
,
Institut Lavoisier de Versailles, UMR 8180, Université de Versailles-Saint-Quentin, 78035 Versailles Cedex, France   Email: guillaume.dagousset@uvsq.fr
› Author Affiliations
Further Information

Publication History

Received: 10 September 2018

Accepted after revision: 27 September 2018

Publication Date:
05 November 2018 (online)


Abstract

An overview of the most significant radical-based synthetic methods currently available for the preparation of trifluoromethylthiolated compounds is presented.

1 Introduction

2 Early Work: Photochemical Reactions Under UV Irradiation

2.1 Reactions Involving CF3SH

2.2 Reactions Involving CF3SCl

2.3 Reactions Involving CF3SSCF3

3 Reactions Involving a Nucleophilic SCF3 Reagent

3.1 Reactions with CuSCF3

3.2 Reactions with AgSCF3

4 Reactions Involving an Electrophilic SCF3 Reagent

4.1 Reactions Involving the Formation of an R Radical

4.2 Reactions involving the formation of SCF3 Radical

5 Conclusion

 
  • References

    • 1a Kirsch P. In Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley; New-York: 2013. 2nd ed.
    • 1b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1c Bioorganic and Medicinal Chemistry of Fluorine . Begue J.-P, Bonnet-Delpon D. Wiley; Hoboken: 2008
    • 1d Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1e Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
    • 1f Wang J, Sanchez-Rosello M, Acena JL, delPozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 2 Leo A, Hansch C, Elkins D. Chem. Rev. 1971; 71: 525

    • For selected reviews, see:
    • 3a Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
    • 3b Boiko VN. Beilstein J. Org. Chem. 2010; 6: 880
    • 3c Tlili A, Billard T. Angew. Chem. Int. Ed. 2013; 52: 6818
    • 3d Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
    • 3e Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 3f Barata-Vallejo S, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 7150
    • 3g Zheng H, Huang Y, Weng Z. Tetrahedron Lett. 2016; 57: 1397
    • 3h Chachignon H, Cahard D. Chin. J. Chem. 2016; 34: 445
  • 4 Bolman PS. H, Safarik I, Stiles DA, Tyerman WJ. R, Strausz OP. Can. J. Chem. 1970; 48: 3872
  • 5 Harris JF. Jr, Stacey FW. J. Am. Chem. Soc. 1961; 83: 840
  • 6 Harris JF. Jr. du Pont de Nemours Patent US 3522293, 1970
  • 7 Harris JF. Jr. J. Am. Chem. Soc. 1962; 84: 3148
  • 8 Harris JF. Jr. J. Org. Chem. 1966; 31: 931
  • 9 Munavalli S, Rohrbaugh DK, Berg FJ, McMahon LR, Longo FR, Durst HD. Phosphorus Sulfur Silicon Relat. Elem. 2002; 177: 1117
  • 10 Haran G, Sharp DW. A. J. Chem. Soc., Perkin Trans. 1 1972; 34
  • 11 Dear RE. A, Gilbert EE. J. Fluorine Chem. 1974; 4: 107
  • 12 Munavalli S. Heteroatom Chem. 1992; 3: 189
  • 13 Munavalli S, Rossman DI, Rohrbaugh DK, Ferguson CP, Durst HD. J. Fluorine Chem. 1996; 76: 7
  • 14 Munavalli S, Wagner GW, Bashir-Hashemi A, Rohrbaugh DK, Durst HD. Synth. Commun. 1997; 27: 2847
  • 15 Munavalli S, Bashir-Hashemi A, Rohrbaugh DK, Durst HD. Phosphorus Sulfur Silicon Relat. Elem. 2006; 181: 435
    • 16a Man EH, Coffman DD, Muetterties EL. J. Am. Chem. Soc. 1959; 81: 3575
    • 16b Emeléus HJ, MacDuffie DE. J. Chem. Soc. 1961; 2597
    • 17a Orda VV, Yagupolskii LM, Bystrov VF, Stepanyati AU. Zh. Obshch. Khim. 1965; 35: 1628
    • 17b Petrova TD, Platnov VE, Shcheyoleva LN, Maksimov AM, Haas A, Schelvis M, Lieb M. J. Fluorine Chem. 1996; 79: 13
    • 17c Adams DJ, Clark JH. J. Org. Chem. 2000; 65: 1456
  • 18 Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
  • 19 Yin F, Wang X.-S. Org. Lett. 2014; 16: 1128
  • 20 Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J. Am. Chem. Soc. 2015; 137: 964
  • 21 Ji M, Wu Z, Yu J, Wan X, Zhu C. Adv. Synth. Catal. 2017; 359: 1959
  • 22 Qiu Y.-F, Zhu X.-Y, Li Y.-X, He Y.-T, Yang F, Wang J, Hua H.-L, Zheng L, Wang L.-C, Liu X.-Y, Liang YM. Org. Lett. 2015; 17: 3694
  • 23 Jin D.-P, Gao P, Chen D.-Q, Chen S, Wang J, Liu X.-Y, Liang Y.-M. Org. Lett. 2016; 18: 3486
  • 24 Guo C.-H, Chen D.-Q, Chen S, Liu X.-Y. Adv. Synth. Catal. 2017; 359: 2901
  • 25 Li H, Liu S, Huang Y, Xu X.-H, Qing F.-L. Chem. Commun. 2017; 53: 10136
  • 26 Wu W, Dai W, Ji X, Cao S. Org. Lett. 2016; 18: 2918
  • 27 Zhu L, Wang G, Guo Q, Xu Z, Zhang D, Wang R. Org. Lett. 2014; 16: 5390
  • 28 Cheng Z.-F, Tao T.-T, Feng Y.-S, Tang W.-K, Xu J, Dai J.-J, Xu H.-J. J. Org. Chem. 2018; 83: 499
  • 29 Pan S, Huang Y, Xu X.-H, Qing F.-L. Org. Lett. 2017; 19: 4624
  • 30 Pan S, Li H, Huang Y, Xu X.-H, Qing F.-L. Org. Lett. 2017; 19: 3247
  • 31 Zhang K, Liu J.-B, Qing F.-L. Chem. Commun. 2014; 50: 14157
  • 32 Guo S, Zhang X, Tang P. Angew. Chem. Int. Ed. 2015; 54: 4065
  • 33 Wu H, Xiao Z, Wu J, Guo Y, Xiao J.-C, Liu C, Chen Q.-Y. Angew. Chem. Int. Ed. 2015; 54: 4070
  • 34 Huang F.-Q, Wang Y.-W, Sun J.-G, Xie J, Qi L.-W, Zhang B. RSC Adv. 2016; 6: 52710
  • 35 Hu F, Shao X, Zhu D, Lu L, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 6105
  • 36 Candish L, Pitzer L, Gómez-Suárez A, Glorius F. Chem. Eur. J. 2016; 22: 4753
  • 37 Czaplyski WL, Na CG, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 13854
  • 38 Koziakov D, Majek M, Jacobi von Wangelin A. Eur. J. Org. Chem. 2017; 6722
  • 39 Yang T, Lu L, Shen Q. Chem. Commun. 2015; 51: 5479
  • 40 Fang J, Wang Z.-K, Wu S.-W, Shen W.-G, Ao G.-Z, Liu F. Chem. Commun. 2017; 53: 7638
  • 41 Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F. J. Am. Chem. Soc. 2016; 138: 16200
  • 42 Honeker R, Garza-Sanchez RA, Hopkinson MN, Glorius F. Chem. Eur. J. 2016; 22: 4395
  • 43 Dagousset G, Simon C, Anselmi E, Tuccio B, Billard T, Magnier E. Chem. Eur. J. 2017; 23: 4282
  • 44 Li Y, Koike T, Akita M. Asian J. Org. Chem. 2017; 6: 445