Synthesis 2021; 53(11): 1849-1878
DOI: 10.1055/s-0037-1610767
review

Recent Developments Towards Synthesis of (Het)arylbenzimidazoles

Vakhid A. Mamedov
,
Nataliya A. Zhukova
This work was partially supported by the Russian Science Foundation (grant no. 18-13-00315).


Abstract

Benzimidazole is an important heterocycle that is widely researched and utilized by the pharmaceutical industry and is one of the five most commonly used five-membered aromatic heterocyclic compounds approved by the US Food and Drug Administration. In view of their wide-ranging bioactivities, systems containing benzimidazole as one of the moieties occupy a special place among other benzimidazole derivatives. Since 2010, many improved synthetic strategies have been developed for the construction of hetaryl- and arylbenzimidazole molecular scaffolds under environmentally benign conditions. This review emphasizes the recent trends and modifications frequently used in the synthesis of derivatives of benzimidazole such as the Phillips–Ladenburg and Weidenhagen reactions, as well as entirely new methods of synthesis, involving oxidative cyclization, cross-coupling, ring distortion strategy, and rearrangements carried out under environmentally benign conditions.

1 Introduction

2 From 1,2-Diaminobenzenes with Various One-Carbon Unit Suppliers

2.1 Phillips–Ladenburg Reaction

2.1.1 With (Het)arenecarboxylic Acids

2.2.2 With (Het)arenecarboxylic Acid Derivatives

2.2 Weidenhagen Reaction

2.2.1 With (Het)arenecarbaldehydes or (Het)aryl Methyl Ketones

2.2.2 With Primary Alcohols

2.2.3 With Primary Alkylamines

2.2.4 With 2-Methylazaarenes

2.2.5 With Other One-Carbon Fragment Suppliers

3 From 2-Haloacetanilides and Amines

4 From Amidines

5 From Tetrahydroquinazolines

6 Mamedov Rearrangement

7 Conclusions and Outlook



Publication History

Received: 11 January 2021

Accepted after revision: 01 February 2021

Article published online:
22 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Asensio JA, Sanchez EM, Gomez-Romero P. Chem. Soc. Rev. 2010; 39: 3210
  • 3 Negwer M, Scharnow H.-G. Organic Chemical Drugs and Their Synonyms . Wiley-VCH; Weinheim: 2001
    • 4a Scott LJ, Dunn CJ, Mallarkey G, Sharpe M. Drugs 2002; 62: 1503
    • 4b McKeage K, Blick SK. A, Croxtall JD, Lyseng-Williamson KA, Keating GM. Drugs 2008; 68: 1571
  • 5 http://www.drugs.com/top200.html (accessed Feb 15, 2021).
  • 6 Venkatesan P. J. Antimicrob. Chemother. 1998; 41: 145
  • 7 Al-Muhaimeed H. J. Int. Med. Res. 1997; 25: 175
    • 8a Hobrecker F. Ber. Dtsch. Chem. Ges. 1872; 5: 920
    • 8b Wright JB. Chem. Rev. 1951; 48: 397
    • 8c Hofmann K. Imidazole and Its Derivatives Part I. In The Chemistry of Heterocyclic Compounds, Vol. 6. Interscience; London: 1953: 247
    • 9a Kamal A, Kumar GB, Nayak VL, Reddy VS, Shaik AB, Rajender Rajender, Kashi Reddy M. Med. Chem. Commun. 2015; 6: 606
    • 9b Reddy TS, Kulhari H, Reddy VG, Bansal V, Kamal A, Shukla R. Eur. J. Med. Chem. 2015; 101: 790
    • 9c Wang Y.-T, Shi T.-Q, Zhu H.-L, Liu C.-H. Bioorg. Med. Chem. 2019; 27: 502
    • 9d Zhang C, Zhong B, Yang S, Pan L, Yu S, Li Z, Li S, Su B, Meng X. Bioorg. Med. Chem. 2015; 23: 3774
    • 9e Baig MF, Shaik SP, Nayak VL, Alarifi A, Kamal A. Bioorg. Med. Chem. Lett. 2017; 27: 4039
    • 9f Paul K, Bindal S, Luxami V. Bioorg. Med. Chem. Lett. 2013; 23: 3667
    • 9g Omar EM, Shaker YM, Galal SA, Ali MM, Kerwin SM, Li J, Tokuda H, Ramadan RA, El Diwani HI. Bioorg. Med. Chem. 2012; 20: 6989
    • 9h Pragathi YJ, Veronica D, Anitha K, Rao MV. B, Raju RR. Chem. Data Collect. 2020; 30: 100556
    • 9i Mirgorodskaya AB, Kuznetsova DA, Kushnazarova RA, Gabdrakhmanov DR, Zhukova NA, Lukashenko SS, Sapunova AS, Voloshina AD, Sinyashin OG, Mamedov VA, Zakharova LY. J. Mol. Liq. 2020; 317: 114007
    • 10a Ashok D, Reddy MR, Nagaraju N, Dharavath R, Ramakrishna K, Gundu S, Shravani P, Sarasija M. Med. Chem. Res. 2020; 29: 699
    • 10b Singla R, Gupta KB, Upadhyay S, Dhiman M, Jaitak V. Eur. J. Med. Chem. 2018; 146: 206
    • 10c Abdul Rahim AS, Salhimi SM, Arumugam N, Pin LC, Yee NS, Muttiah NN, Keat WB, Hamid SA, Osman H, Mat IB. J. Enzyme Inhib. Med. Chem. 2013; 28: 1255
  • 11 Chandrika NT, Shrestha SK, Ngo HX, Garneau-Tsodikova S. Bioorg. Med. Chem. 2016; 24: 3680
  • 12 Escala N, Valderas-García E, Bardón M. Á, de Agüero CG. V, Escarcena R, López-Pérez JL, Rojo-Vázquez FA, San Feliciano A, Balaña-Fouce R, Martínez-Valladares M, del Olmo E. Eur. J. Med. Chem. 2020; 208: 112554
    • 13a Shaukat A, Mirza HM, Ansari AH, Yasinzai M, Zaidi SZ, Dilshad S, Ansari FL. Med. Chem. Res. 2013; 22: 3606
    • 13b Keurulainen L, Siiskonen A, Nasereddin A, Kopelyanskiy D, Sacerdoti-Sierra N, Leino TO, Tammela P, Yli-Kauhaluoma J, Jaffe CL, Kiuru P. Bioorg. Med. Chem. Lett. 2015; 25: 1933
  • 14 Chaturvedi AK, Verma AK, Thakur JP, Roy S, Tripathi SB, Kumar BS, Khwaja S, Sachan NK, Sharma A, Chanda D, Shanker K, Saikia D, Negia AS. Bioorg. Med. Chem. 2018; 26: 4551
  • 15 Garudachari B, Satyanarayana MN, Thippeswamy B, Shivakumar CK, Shivananda KN, Hegde G, Isloor AM. Eur. J. Med. Chem. 2012; 54: 900
  • 16 Abdullaziz MA, Abdel-Mohsen HT, El Kerdawy AM, Ragab FA. F, Ali MM, Abu-bakr SM, Girgis AS, El Diwani HI. Eur. J. Med. Chem. 2017; 136: 315
  • 17 Hu Y, Cole D, Denny RA, Anderson DR, Ipek M, Ni Y, Wang X, Thaisrivongs S, Chamberlain T, Hall JP, Liu J, Luong M, Lin L.-L, Telliez J.-B, Gopalsamy A. Bioorg. Med. Chem. Lett. 2011; 21: 4758
  • 18 Kirubakaran S, Gorla SK, Sharling L, Zhang M, Liu X, Ray SS, MacPherson IS, Striepen B, Hedstrom L, Cuny GD. Bioorg. Med. Chem. Lett. 2012; 22: 1985
  • 19 Zheng Y, Zheng M, Ling X, Liu Y, Xue Y, An L, Gu N, Min J. Bioorg. Med. Chem. Lett. 2013; 23: 3523
  • 20 Kumar S, Ceruso M, Tuccinardi T, Supuran CT, Sharma PK. Bioorg. Med. Chem. 2016; 24: 2907
  • 21 Tamura Y, Omori N, Kouyama N, Nishiura Y, Hayashi K, Watanabe K, Tanaka Y, Chiba T, Yukioka H, Sato H, Okuno T. Bioorg. Med. Chem. Lett. 2012; 22: 5498
  • 22 Lim CJ, Kim N, Lee EK, Lee BH, Oh K.-S, Yoo SE, Yi KY. Bioorg. Med. Chem. Lett. 2011; 21: 2309
  • 23 Cosimelli B, Taliani S, Greco G, Novellino E, Sala A, Severi E, Da Settimo F, La Motta C, Pugliesi I, Antonioli L, Fornai M, Colucci R, Blandizzi C, Daniele S, Trincavelli ML, Martini C. ChemMedChem 2011; 6: 1909
    • 24a Choudhary AS, Sekar N. J. Fluoresc. 2015; 25: 835
    • 24b Tayade RP, Sekar N. Dyes Pigm. 2016; 128: 111
    • 25a Jiang K, Chen S.-H, Luo S.-H, Pang C.-M, Wu X.-Y, Wang Z.-Y. Dyes Pigm. 2019; 167: 164
    • 25b Horak E, Kassal P, Murković Steinberg I. Supramol. Chem. 2018; 30: 838
    • 26a Lgaz H, Salghi R, Jodeh S. Int. J. Corros. Scale Inhib. 2016; 5: 347
    • 26b Dutta A, Saha SKr, Banerjee P, Sukul D. Corros. Sci. 2015; 98: 541
    • 26c Zhang F, Tang Y, Cao Z, Jing W, Wu Z, Chen Y. Corros. Sci. 2012; 61: 1
    • 27a Wei X, Wei X, Jiang Y, Cui X, Li Y, Wang H, Qi X. J. Coord. Chem. 2015; 68: 3825
    • 27b Sinha S, Berdichevsky EK, Warren JJ. Inorg. Chim. Acta 2017; 460: 63
    • 27c Liu J, Lin Q, Zhang YM, Wei TB. Sci. China: Chem. 2014; 57: 1257
    • 27d Cao H.-T, Ding L, Yu J, Shan G.-G, Wang T, Sun H.-Z, Gao Y, Xie W.-F, Su Z.-M. Dyes Pigm. 2019; 160: 119
    • 27e Kenche VB, Hung LW, Perez K, Volitakes I, Ciccotosto G, Kwok J, Critch N, Sherratt N, Cortes M, Lal V, Masters CL, Murakami K, Cappai R, Adlard PA, Barnham KJ. Angew. Chem. Int. Ed. 2013; 52: 3374
    • 27f Sahki FA, Messaadia L, Merazig H, Chibani A, Bouraiou A, Bouacida S. J. Chem. Sci. 2017; 129: 21
    • 27g Wang Y.-T, Yan S.-C, Tang G.-M, Zhao C, Li T.-D, Cui Y.-Z. Inorg. Chim. Acta 2011; 376: 492
    • 28a Faheem M, Rathaur A, Pandey A, Kumar V, Singh VK, Tiwari AK. ChemistrySelect 2020; 5: 3981
    • 28b Sharma J, Soni PK, Bansal R, Halve AK. Curr. Org. Chem. 2018; 22: 2280
    • 28c Largeron M, Nguyen KM. H. Synthesis 2018; 50: 241
    • 28d Alaqeel SI. J. Saudi Chem. Soc. 2017; 21: 229
    • 28e Singh S, Khanna P, Panda SS, Khanna L. J. Heterocycl. Chem. 2019; 56: 2702
    • 28f Jonušis M, Čikotienė I. Chem. Heterocycl. Compd. 2016; 52: 776
    • 28g Panda SS, Malik R, Jain SC. Curr. Org. Chem. 2012; 16: 1905
    • 28h Maiti B, Chanda K. RSC Adv. 2016; 6: 50384
    • 28i Mamedov VA, Murtazina AM. Russ. Chem. Rev. 2011; 80: 397
    • 28j Mamedov VA. RSC Adv. 2016; 6: 42132
    • 29a Ladenburg A. Ber. Dtsch. Chem. Ges. 1875; 8: 677
    • 29b Ladenburg A. Ber. Dtsch. Chem. Ges. 1887; 10: 1123
  • 31 Yang D, Fokas D, Li J, Yu L, Baldino CM. Synthesis 2005; 47
  • 32 Zerong W. Comprehensive Organic Name Reaction and Reagents, Vol. 2. John Wiley & Sons; Hoboken: 2009: 2197-2199
  • 33 Shankar B, Jalapathi P, Valeru A, Kumar AK, Saikrishna B, Kudle K. Med. Chem. Res. 2017; 26: 1835
  • 34 Kalalbandi VK. A, Seetharamappa J. Synth. Commun. 2016; 46: 626
  • 35 Charrier J.-D, Durrant SJ, Golec JM. C, Kay DP, Knegtel RM. A, MacCormick S, Mortimore M, O’Donnell ME, Pinder JL, Reaper PM, Rutherford AP, Wang PS. H, Young SC, Pollard JR. J. Med. Chem. 2011; 54: 2320
  • 36 Dey M, Deb K, Dhar SS. Chin. Chem. Lett. 2011; 92: 296
  • 37 Abdelhamid AO, Negm AM, Abass IM. J. Prakt. Chem. 1989; 331: 31
  • 38 Chen Z.-Z, Li S.-Q, Liao W.-L, Xie Z.-G, Wang M.-S, Cao Y, Zhang J, Xu Z.-G. Tetrahedron 2015; 71: 8424
  • 39 Sasaki T, Yoshioka T, Suzuki Y. Bull. Chem. Soc. Jpn. 1969; 42: 3335
  • 40 Smellie IA. S, Fromm A, Fabbiani F, Oswald ID. H, White FJ, Paton RM. Tetrahedron 2010; 66: 7155
  • 41 Smellie IA. S, Paton RM. ARKIVOC 2012; (ix): 49
  • 42 Stepanov AI, Astrat’ev AA, Sheremetev AB, Lagutina NK, Palysaeva NV, Tyurin AYu, Aleksandrova NS, Sadchikova NP, Suponitsky KYu, Atamanenko OP, Konyushkin LD, Semenov RV, Firgang SI, Kiselyov AS, Semenova MN, Semenov VV. Eur. J. Med. Chem. 2015; 94: 237
  • 43 Tynebor R, Millings E. Synth. Commun. 2013; 43: 1902
  • 44 Vatsuro KV, Mischenko GL. Imennye reakcii v organicheskoi khimii . Moscow; Khimia: 1976. 102; in Russian
    • 45a Singh RN, Rawat P, Baboo V. J. Mol. Struct. 2015; 1102: 331
    • 45b Agrahari B, Layek S, Ganguly R, Dege N, Pathak DD. J. Organomet. Chem. 2019; 890: 13
    • 45c Dekamin MG, Arefi E, Yaghoubi A. RSC Adv. 2016; 6: 86982
    • 45d Digwal CS, Yadav U, Sakla AP, Ramya PV. S, Aaghaz S, Kamal A. Tetrahedron Lett. 2016; 57: 4012
    • 45e Adharvana Chari M, Shobha D, Sasaki T. Tetrahedron Lett. 2011; 52: 5575
    • 45f Senapak W, Saeeng R, Jaratjaroonphong J, Promarak V, Sirion U. Tetrahedron 2019; 75: 3543
    • 45g Rahimi S, Soleimani E. Results Chem. 2020; 2: 100060
  • 46 Padalkar VS, Borse BN, Gupta VD, Phatangare KR, Patil VS, Sekar N. J. Heterocycl. Chem. 2016; 53: 1347
    • 47a Kandemir H, Sengu IF. Synth. Commun. 2015; 45: 2583
    • 47b Martins GM, Puccinelli T, Gariani RA, Xavier FR, Silveira CC, Mendes SR. Tetrahedron Lett. 2017; 58: 1969
  • 48 Tang Z, Peng Y, Liu F. J. Heterocycl. Chem. 2020; 57: 2330
  • 49 Kamal A, Nagaseshadri B, Nayak VL, Srinivasulu V, Sathish M, Kapure JS, Reddy CS. Bioorg. Chem. 2015; 63: 72
  • 50 Secci D, Bolasco A, D’Ascenzio M, della Sala F, Yáñez M, Carradori S. J. Heterocycl. Chem. 2012; 49: 1187
  • 52 Dhakshinamoorthy A, Kanagaraj K, Pitchumani K. Tetrahedron Lett. 2011; 52: 69
  • 53 Wang Z, Song T, Yang Y. Synlett 2019; 30: 319
  • 54 Alapati ML. P. R, Abburi SR, Mukkamala SB, Rao MK. Synth. Commun. 2015; 45: 2436
  • 55 Kumar V, Khandare DG, Chatterjee A, Banerjee M. Tetrahedron Lett. 2013; 54: 5505
    • 56a Vallés-García C, Cabrero-Antonino M, Navalón S, Álvaro M, Dhakshinamoorthy A, García H. J. Colloid Interface Sci. 2020; 560: 885
    • 56b Venkateswarlu Y, Kumar SR, Leelavathi P. Org. Med. Chem. Lett. 2013; 3: 7
  • 57 Sharghi H, Aberi M, Shiri P. Appl. Organomet. Chem. 2019; 33: 4974
  • 58 Kim Y, Kumar MR, Park N, Heo Y, Lee S. J. Org. Chem. 2011; 76: 9577
  • 59 Ravi O, Shaikh A, Upare A, Singarapu KK, Bathula SR. J. Org. Chem. 2017; 82: 4422
  • 60 Srivastava A, Shukla G, Yadav D, Singh MS. ARKIVOC 2018; (ii): 81
  • 61 Raghavendra GM, Ramesha AB, Revanna CN, Nandeesh KN, Mantelingu K, Rangappa KS. Tetrahedron Lett. 2011; 52: 5571
  • 62 Ramachandran R, Prakash G, Selvamurugan S, Viswanathamurthi P, Maleckib JG, Ramkumar V. Dalton Trans. 2014; 43: 7889
  • 63 Yu J, Shen M, Lu M. J. Iran Chem. Soc. 2015; 12: 771
  • 64 Guo B, Li H.-X, Zhang S.-Q, Young DJ, Lang J.-P. ChemCatChem 2018; 10: 5627
  • 65 Zuo M, Guo W, Pang Y, Guo R, Hou C, Sun S, Wu H, Sun Z, Chu W. New J. Chem. 2020; 44: 14490
  • 66 Xu C, Xiao Z.-Q, Li H.-M, Han X, Wang Z.-Q, Fu W.-J, Ji B.-M, Hao X.-Q, Song M.-P. Eur. J. Org. Chem. 2015; 7427
    • 67a Kuo HY, Liao BS, Liu ST. Synthesis 2013; 45: 189
    • 67b Hille T, Irrgang T, Kempe R. Chem. Eur. J. 2014; 20: 5569
  • 68 Xu Z, Wang D.-S, Yu X, Yang Y, Wang D. Adv. Synth. Catal. 2017; 359: 3332
  • 69 Das KJ, Mondal A, Srimani D. J. Org. Chem. 2018; 83: 9553
  • 70 Mehta A, Thaker A, Londhe V, Nandan SR. Appl. Catal., A 2014; 478: 241
  • 71 Pramanik A, Roy R, Khan S, Ghatak A, Bhar S. Tetrahedron Lett. 2014; 55: 1771
  • 72 Lai Y.-L, Ye J.-S, Huang J.-M. Chem. Eur. J. 2016; 22: 5425
  • 73 Climent MJ, Corma A, Iborra S, Martínez-Silvestre S. ChemCatChem 2013; 5: 3866
  • 74 Li G, Wang J, Yuan B, Zhang D, Lin Z, Li P, Huang H. Tetrahedron Lett. 2013; 54: 6934
  • 75 Nguyen TB, Ermolenko L, Al-Mourabit A. Synthesis 2015; 47: 1741
  • 76 Li X, Hu R, Tong Y, Pan Q, Miao D, Han S. Tetrahedron Lett. 2016; 57: 4645
  • 77 Das S, Mallick S, De Sarkar S. J. Org. Chem. 2019; 84: 12111
  • 78 Putta RR, Chun S, Choi SH, Lee SB, Oh D.-C, Hong S. J. Org. Chem. 2020; 85: 15396
  • 79 Mahesh D, Sadhu P, Punniyamurthy T. J. Org. Chem. 2016; 81: 3227
    • 80a Chu G, Li C. Org. Biomol. Chem. 2010; 8: 4716
    • 80b Patil RD, Adimurthy S. RSC Adv. 2012; 2: 5119
    • 80c Wang J, Lu S, Cao X, Gu H. Chem. Commun. 2014; 50: 5637
  • 81 Largeron M, Fleury M.-B. Chem. Eur. J. 2015; 21: 3815
    • 82a Mahesh D, Sadhu P, Punniyamurthy T. J. Org. Chem. 2015; 80: 1644
    • 82b Tang C, Jiao N. J. Am. Chem. Soc. 2012; 134: 18924
  • 83 Ramana T, Punniyamurthy T. Chem. Eur. J. 2012; 18: 13279
    • 84a Tsuda T, Watanabe K, Miyata K, Yamamoto H, Saegusa T. Inorg. Chem. 1981; 20: 2728
    • 84b Giri R, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 15860
    • 85a Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 85b King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
    • 85c Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 85d Suess AM, Ertem MZ, Cramer CJ, Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
  • 86 Yaragorla S, Babu PV. Tetrahedron Lett. 2017; 58: 1879
  • 87 Nguyen TB, Ermolenko L, Al-Mourabit A. J. Am. Chem. Soc. 2013; 135: 118
  • 88 Brătulescu G. Synth. Commun. 2017; 47: 811
  • 89 Yu J, Lu M. Res. Chem. Intermed. 2016; 42: 471
    • 90a Liu L, Frohn M, Xi N, Dominguez C, Hungate R, Reider PJ. J. Org. Chem. 2005; 70: 10135
    • 90b Lv X, Bao W. J. Org. Chem. 2007; 72: 3863
    • 90c Anderson KW, Tundel RE, Ikawa T, Altman RA, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 6523
  • 91 Zou B, Yuan Q, Ma D. Angew. Chem. Int. Ed. 2007; 46: 2598
  • 93 Zheng N, Anderson KW, Huang X, Nguyen HN, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 7509
  • 94 Harris MC, Huang X, Buchwald SL. Org. Lett. 2002; 4: 2885
  • 95 Jui NT, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 11624
    • 96a Brain CT, Steer JT. J. Org. Chem. 2003; 68: 6814
    • 96b Brain CT, Brunton SA. Tetrahedron Lett. 2002; 43: 1893
  • 97 Saha P, Ramana T, Purkait N, Ali MA, Paul R, Punniyamurthy T. J. Org. Chem. 2009; 74: 8719
  • 98 Saha P, Ali MA, Ghosh P, Punniyamurthy T. Org. Biomol. Chem. 2010; 8: 5692
  • 99 Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
  • 100 Patil V, Barragan E, Patil SA, Patil SA, Bugarin A. Tetrahedron Lett. 2017; 58: 3474
  • 101 Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 587
  • 102 Carvalho LC. R, Fernandes E, Marques MM. B. Chem. Eur. J. 2011; 17: 12544
  • 103 Lyakhova EA, Gusyeva YA, Nekhoroshkova JV, Shafran LM, Lyakhov SA. Eur. J. Med. Chem. 2009; 44: 3305
  • 104 Li G, He R, Liu Q, Wang Z, Liu Y, Wang Q. J. Org. Chem. 2019; 84: 8646
    • 105a Huang J, He Y, Wang Y, Zhu Q. Chem. Eur. J. 2012; 18: 13964
    • 105b Alla SK, Kumar RK, Sadhu P, Punniyamurthy T. Org. Lett. 2013; 15: 1334
  • 106 Guru MM, Ali MA, Punniyamurthy T. J. Org. Chem. 2011; 76: 5295
  • 107 Ayaz M, Xu Z, Hulme C. Tetrahedron Lett. 2014; 55: 3406
  • 108 Hati S, Dutta PK, Dutta S, Munshi P, Sen S. Org. Lett. 2016; 18: 3090
  • 109 Saha M, Mukherjee P, Das AR. Tetrahedron Lett. 2017; 58: 1046
  • 110 Saha M, Das AR. Tetrahedron Lett. 2018; 59: 2520
    • 111a Kalinin AA, Mamedov VA, Levin YaA. Chem. Heterocycl. Compd. 2000; 36: 882
    • 111b Mamedov VA, Kalinin AA, Gubaidullin AT, Chernova AV, Litvinov IA, Levin YaA, Shagidullin RR. Russ. Chem. Bull. 2004; 53: 164
    • 112a Kalinin AA, Isaikina OG, Mamedov VA. Chem. Heterocycl. Compd. 2007; 43: 1307
    • 112b Mamedov VA, Saifina DF, Rizvanov IKh, Gubaidullin AT. Tetrahedron Lett. 2008; 49: 4644
    • 112c Mamedov VA, Zhukova NA, Beschastnova TN, Gubaidullin AT, Balandina AA, Latypov ShK. Tetrahedron 2010; 66: 9745
    • 112d Mamedov VA, Zhukova NA, Syakaev VV, Kadyrova MS, Beschastnova TN, Rizvanov IKh, Latypov SK. Chem. Heterocycl. Compd. 2017; 53: 1003
  • 113 Mamedov VA, Kalinin AA, Gubaidullin AT, Gorbunova EA, Litvinov IA. Russ. J. Org. Chem. 2006; 42: 1532
    • 114a Mamedov VA, Zhukova NA, Sykaev VV, Gubaidullin AT, Beschastnova TN, Adgamova DI, Samigullina AI, Latypov ShK. Tetrahedron 2013; 69: 1403
    • 114b Mamedov VA, Murtazina AM, Zhukova NA, Beschastnova TN, Rizvanov IKh, Latypov ShK. Tetrahedron 2014; 70: 7567
    • 114c Burganov TI, Monari A, Katsyuba SA, Mamedov VA, Zhukova NA, Assfeld X. J. Phys. Chem. B 2019; 123: 5514
  • 115 Mamedov VA, Zhukova NA, Kadyrova MS, Fazleeva RR, Bazanova OB, Beschastnova TN, Gubaidullin AT, Rizvanov IKh, Yanilkin VV, Latypov SK, Sinyashin OG. J. Heterocycl. Chem. 2020; 57: 2466
    • 116a Mamedov VA, Saifina DF, Gubaidullin AT, Saifina AF, Rizvanov IKh. Tetrahedron Lett. 2008; 49: 6231
    • 116b Mamedov VA, Murtazina AM, Gubaidullin AT, Hafizova EA, Rizvanov IKh. Tetrahedron Lett. 2009; 50: 5186
    • 116c Mamedov VA, Zhukova NA, Beschastnova TN, Zakirova EI, Kadyrova SF, Mironova EV, Nikonova AG, Latypov ShK, Litvinov IA. Tetrahedron Lett. 2012; 53: 292
    • 116d Mamedov VA, Khafizova EA, Syakaev VV, Bazanova OB, Zamaletdinova AI, Rizvanov IKh, Latypov SK, Sinyashin OG. Chem. Heterocycl. Compd. 2017; 53: 1033
    • 116e Mamedov VA, Khafizova EA, Gubaidullin AT, Murtazina AM, Adgamova DI, Samigullina AI, Litvinov IA. Russ. Chem. Bull. 2011; 60: 368
  • 117 Mamedov VA, Zhukova NA, Beschastnova TN, Gubaidullin AT, Rakov DV, Rizvanov IKh. Tetrahedron Lett. 2011; 52: 4280
  • 118 Qu Z.-W, Zhu H, Zhukova NA, Katsyuba SA, Mamedov VA, Grimme S. ChemCatChem 2020; in press DOI: org./10.1002/cctc.202001755.
  • 119 Mamedov VA, Zhukova NA, Gubaidullin AT, Syakaev VV, Kadyrova MS, Beschastnova TN, Bazanova OB, Rizvanov IKh, Latypov ShK. J. Org. Chem. 2018; 83: 14942
    • 120a Mamedov VA, Kadyrova SF, Zhukova NA, Galimullina VR, Polyancev FM, Latypov ShK. Tetrahedron 2014; 70: 5934
    • 120b Mamedov VA, Saifina DF, Gubaidullin AT, Ganieva VR, Kadyrova SF, Rakov DV, Rizvanov IKh, Sinyashin OG. Tetrahedron Lett. 2010; 51: 6503
  • 121 Mamedov VA, Zhukova NA, Syakaev VV, Gubaidullin AT, Kadyrova MS, Beschastnova TN, Rizvanov IKh, Latypov SK. Tetrahedron 2020; 76: 131721
  • 122 Smith MB. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed. Wiley; Hoboken: 2013: 1187-1188
  • 123 Mamedov VA, Zhukova NA, Kadyrova MS, Syakaev VV, Beschastnova TN, Buzyurova DN, Rizvanov IKh, Latypov ShK, Sinyashin OG. J. Org. Chem. 2019; 84: 13572
  • 124 Mamedov VA, Khafizova EA, Syakaev VV, Gubaidullin AT, Samigullina AI, Algaeva NE, Latypov ShK. Tetrahedron 2018; 74: 6544
  • 125 Zou B, Leong SY, Ding M, Smith PW. Tetrahedron Lett. 2015; 56: 6016
  • 126 Hassner A, Namboothiri I. Organic Syntheses Based on Name Reactions, 3th ed. Elsevier; Amsterdam: 2012: 299-300
  • 127 Mamedov VA. Quinoxalines. Synthesis, Reactions, Mechanisms and Structure . Springer International; Switzerland: 2016
    • 128a Mamedov VA, Zhukova NA, Zamaletdinova AI, Beschastnova TN, Kadyrova MS, Rizvanov IKh, Syakaev VV, Latypov SK. J. Org. Chem. 2014; 79: 9161
    • 128b Mamedov VA, Zhukova NA, Beschastnova TN, Syakaev VV, Krivolapov DB, Mironova EV, Zamaletdinova AI, Rizvanov IKh, Latypov SK. J. Org. Chem. 2015; 80: 1375
    • 128c Mamedov VA, Khafizova EA, Algaeva NE, Latypov SK, Sinyashin OG. J. Org. Chem. 2020; 85: 9887
    • 129a Mamedov VA, Zhukova NA. Russ. Chem. Rev. 2017; 86: 968
    • 129b Mamedov VA, Zhukova NA. In Progress in Heterocyclic Chemistry, Vol. 29. Gribble GW, Joule JA. Elsevier; Amsterdam: 2017: 1-43
    • 129c Mamedov VA, Zhukova NA, Sinyashin OG. Mendeleev Commun. 2017; 27: 1
  • 130 Smith MB. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed. Wiley; Hoboken: 2013: 784-788
  • 131 Pozharskii AF. Theoretical Principles of Heterocyclic Chemistry . Moscow; Khimia: 1985. 67; in Russian