Synthesis 2019; 51(20): 3875-3882
DOI: 10.1055/s-0037-1610725
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Asymmetrical 2,6-Diarylpyridines from Linear α,β,γ,δ-Unsaturated Ketones by Addition of Ammonium Formate Followed by Annulation

Yejun Gao
a   School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China   Email: cre@tzc.edu.cn   Email: yongmin.ma@tzc.edu.cn
b   School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
,
Rener Chen
a   School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China   Email: cre@tzc.edu.cn   Email: yongmin.ma@tzc.edu.cn
,
Yongmin Ma
a   School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China   Email: cre@tzc.edu.cn   Email: yongmin.ma@tzc.edu.cn
b   School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
› Author Affiliations
Further Information

Publication History

Received: 05 June 2019

Accepted after revision: 24 July 2019

Publication Date:
08 August 2019 (online)


In memory of Professor Yongmin Zhang (1932–2019)

Abstract

A simple and efficient method has been established for the synthesis of asymmetrical 2,6-diarylpyridines by cyclization of α,β,γ,δ-unsaturated ketones with ammonium formate under air atmosphere. The reaction is metal-free and operationally convenient from readily available starting materials. Thirty-three examples have been presented, most of which show good yields.

Supporting Information

 
  • References

    • 1a Ma XQ, Gang DR. Nat. Prod. Rep. 2004; 21: 752
    • 1b Vargas DF, Larghi EL, Kaufman TS. Nat. Prod. Rep. 2019; 36: 354
    • 1c Uredi D, Motati DR, Watkins EB. Chem. Commun. 2019; 55: 3270
    • 2a Rokesh K, Sakar M, Trong-On D. Mater. Lett. 2019; 242: 99
    • 2b Hang X.-C, Fleetham T, Turner E, Brooks J, Li J. Angew. Chem. Int. Ed. 2013; 52: 6753
    • 2c Cheng G, Weng Y, Yang X, Cui X. Org. Lett. 2015; 17: 3790
    • 3a McMillion ND, Wilson AW, Goetz MK, Chang M.-C, Lin C.-C, Feng W.-J, McCrory CC. L, Anderson JS. Inorg. Chem. 2019; 58: 1391
    • 3b Shi H, Wang R, Lou M, Jia D, Guo Y, Wang X, Huang Y, Sun Z, Wang T, Wang L. Electrochim. Acta 2019; 294: 93
    • 3c Momblona C, Ertl CD, Pertegas A, Junquera-Hernandez JM, Bolink HJ, Constable EC, Sessolo M, Orti E, Housecroft CE. J. Mater. Chem. C 2018; 6: 12679
    • 4a Burriss A, Edmunds AJ. F, Emery D, Hall RG, Jacob O, Schaetzer J. Pest. Manag. Sci. 2018; 74: 1228
    • 4b Guan A, Liu C, Chen W, Yang F, Xie Y, Zhang J, Li Z, Wang M. J. Agric. Food Chem. 2017; 65: 1272
    • 4c Nauha E, Kolehmainen E, Nissinen M. CrystEngComm 2011; 13: 6531
    • 4d Nauha E, Nissinen M. J. Mol. Struct. 2011; 1006: 566
    • 5a Prachayasittikul S, Pingaew R, Worachartcheewan A, Sinthupoom N, Prachayasittikul V, Ruchirawat S, Prachayasittikul V. Mini-Rev. Med. Chem. 2017; 17: 869
    • 5b Ghobadian R, Mahdavi M, Nadri H, Moradi A, Edraki N, Akbarzadeh T, Sharifzadeh M, Bukhari SN. A, Amini M. Eur. J. Med. Chem. 2018; 155: 49
    • 5c Huang Y, Wang Q, Wu Y. J. Pharm. Sci. 2018; 107: 1633
    • 5d Zhou Y, Zhu X, Zhang L, Tang C, Feng B. Chem. Biol. Drug Des. 2019; 93: 67
  • 6 Conlon IL, Van Eker D, Abdelmalak S, Murphy WA, Bashir H, Sun M, Chauhan J, Varney KM, Godoy-Ruiz R, Wilder PT, Fletcher S. Bioorg. Med. Chem. Lett. 2018; 28: 1949
    • 7a Bertuzzi G, Sinisi A, Caruana L, Mazzanti A, Fochi M, Bernardi L. ACS Catal. 2016; 6: 6473
    • 7b Binnani C, Rai RK, Tyagi D, Mobin SM, Singh SK. Eur. J. Inorg. Chem. 2018; 1435
    • 7c Greve E, Porter JD, Dockendorff C. Synthesis 2019; 51: 450
    • 7d Ramesh R, Arivazhagan M, Malecki JG, Lalitha A. Synlett 2018; 29: 1897
    • 7e Zhang Y, Zhang Y, Sun YL, Du X, Shi JY, Wang WD, Wang W. Chem. Eur. J. 2012; 18: 6328
    • 8a Xue L, Cheng G, Zhu R, Cui X. RSC Adv. 2017; 7: 44009
    • 8b Colby DA, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2008; 130: 3645
    • 8c Evdokimov NM, Magedov IV, Kireev AS, Kornienko A. Org. Lett. 2006; 8: 899
    • 8d Farooq S, Munawar MA, Ngani Z. Curr. Org. Chem. 2018; 22: 2671
    • 8e Paplal B, Nagaraju S, Sathish K, Kashinath D. Catal. Commun. 2018; 103: 110
    • 9a Abdelwahab AB, Hanna AG, Kirsch G. Synthesis 2017; 49: 2971
    • 9b Quiroga J, Diaz Y, Insuasty B, Abonia R, Nogueras M, Cobo J. Tetrahedron Lett. 2010; 51: 2928
    • 9c Sun SG, Liu YC, Liu Q, Zhao YL, Dong DW. Synlett 2004; 1731
    • 9d Thomas AD, Asokan CV. Tetrahedron Lett. 2002; 43: 2273
    • 9e Thomas AD, Josemin, Asokan CV. Tetrahedron 2004; 60: 5069
    • 10a Lewis DE. Angew. Chem. Int. Ed. 2017; 56: 9660
    • 10b Mastalir M, Pittenauer E, Allmaier G, Kirchner K. Tetrahedron Lett. 2016; 57: 333
    • 10c Sugimura T, Komatsu A, Koseki Y, Usuki T. Tetrahedron Lett. 2014; 55: 6343
    • 10d Usuki T, Sugimura T, Komatsu A, Koseki Y. Org. Lett. 2014; 16: 1672
    • 10e Dagorn F, Yan L.-H, Gravel E, Leblanc K, Maciuk A, Poupon E. Tetrahedron Lett. 2011; 52: 3523
    • 10f Jin F, Li Y. Catal. Lett. 2009; 131: 545
    • 11a Bagley MC, Glover C. Molecules 2010; 15: 3211
    • 11b Bagley MC, Glover C, Merritt EA. Synlett 2007; 2459
    • 11c Kantevari S, Patpi SR, Addla D, Putapatri SR, Sridhar B, Yogeeswari P, Sriram D. ACS Comb. Sci. 2011; 13: 427
    • 11d Bagley MC, Dale JW, Bower J. Synlett 2001; 1149
    • 11e Bagley MC, Dale JW, Hughes DD, Ohnesorge M, Phillips NG, Bower J. Synlett 2001; 1523
    • 11f Bashford KE, Burton MB, Cameron S, Cooper AL, Hogg RD, Kane PD, MacManus DA, Matrunola CA, Moody CJ, Robertson AA. B, Warne MR. Tetrahedron Lett. 2003; 44: 1627
    • 12a Sasaki I, Daran J.-C, Commenges G. Beilstein J. Org. Chem. 2015; 11: 1781
    • 12b Jiang B, Hao W.-J, Wang X, Shi F, Tu S.-J. J. Comb. Chem. 2009; 11: 846
    • 12c Thirumurugan P, Nandakumar A, Muralidharan D, Perumal PT. J. Comb. Chem. 2010; 12: 161
    • 12d Adib M, Tahermansouri H, Koloogani SA, Mohammadia B, Bijanzadeh HR. Tetrahedron Lett. 2006; 47: 5957
    • 12e Fujimori T, Wirsching P, Janda KD. J. Comb. Chem. 2003; 5: 625
    • 13a Zhao M.-N, Hui R.-R, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Org. Lett. 2014; 16: 3082
    • 13b Bai Y, Tang L, Huang H, Deng G.-J. Org. Biomol. Chem. 2015; 13: 4404
    • 13c Manning JR, Davies HM. L. J. Am. Chem. Soc. 2008; 130: 8602
    • 13d Ohashi M, Takeda I, Ikawa M, Ogoshi S. J. Am. Chem. Soc. 2011; 133: 18018
    • 13e Midya SP, Landge VG, Sahoo MK, Rana J, Balaraman E. Chem. Commun. 2018; 54: 90
    • 13f Huang H, Ji X, Wu W, Jiang H. Chem. Soc. Rev. 2015; 44: 1155
    • 13g Neely JM, Rovis T. J. Am. Chem. Soc. 2014; 136: 2735
  • 14 Chen J, Ding Y, Gao Y, Zhou D, Hider R, Ma Y. Chemistry Select 2019; 4: 2404
    • 16a Csaky AG, de la Herran G, Carmen Murcia M. Chem. Soc. Rev. 2010; 39: 4080
    • 16b Lear MJ, Hayashi Y. ChemCatChem 2013; 5: 3499
    • 17a Nishimura T, Noishiki A, Hayashi T. Chem. Commun. 2012; 48: 973
    • 17b Sawano T, Ashouri A, Nishimura T, Hayashi T. J. Am. Chem. Soc. 2012; 134: 18936
    • 17c Nishimura T, Yasuhara Y, Sawano T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 7872
    • 18a Chen S, Wu L, Shao Q, Yang G, Zhang W. Chem. Commun. 2018; 54: 2522
    • 18b Sugano G, Kawada K, Shigeta M, Hata T, Urabe H. Tetrahedron Lett. 2019; 60: 885
    • 18c Wu X, Xie F, Ling Z, Tang L, Zhang W. Adv. Synth. Catal. 2016; 358: 2510
  • 19 Henon H, Mauduit M, Alexakis A. Angew. Chem. Int. Ed. 2008; 47: 9122
  • 20 Gan K, Ng JS, Sadeer A, Pullarkat SA. Synlett 2016; 27: 254
  • 21 Gao Z, Fletcher SP. Chem. Commun. 2018; 54: 3601
  • 22 Gao Y, Zhou D, Ma Y. ChemistrySelect 2018; 3: 9374
  • 23 Yin C, Zhong K, Li W, Yang X, Sun R, Zhang C, Zheng X, Yuan M, Li R, Lan Y, Fu H, Chen H. Adv. Synth. Catal. 2018; 360: 3990
  • 24 Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
  • 25 Sha F, Shen H, Wu X.-Y. Eur. J. Org. Chem. 2013; 2537