Synthesis 2018; 50(20): 4104-4112
DOI: 10.1055/s-0037-1610540
paper
© Georg Thieme Verlag Stuttgart · New York

Isocyanide-Based MCRs: Straightforward Access to Perfluroalkyl­ated γ-Spiroiminolactones

Lili Tao
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Zhenhua Fan
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Xin Peng
b   Qianweichang College, Shanghai University, Shanghai 200444, P. R. of China
,
Jing Han
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Weimin He
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Jie Chen
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Hongmei Deng
c   Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai 200444, P. R. of China
,
Min Shao
c   Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai 200444, P. R. of China
,
Hui Zhang*
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
c   Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai 200444, P. R. of China
,
Weiguo Cao*
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
d   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of S ciences, Shanghai 200032, P. R. of China
e   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
The authors are grateful to the National Natural Science Foundation of China (NSFC) (Grant Nos. 21672138, 21542005, 21272152) for financial support.
Further Information

Publication History

Received: 07 May 2018

Accepted after revision: 06 June 2018

Publication Date:
16 July 2018 (online)


Abstract

A variety of perfluoroalkyl-substituted γ-spiroiminolactones have been synthesized via a one-pot, three-component cascade reaction in which isocyanides, methyl perfluoroalk-2-ynoates and 1,2-diketones undergo highly regioselective Michael addition, nucleophilic addition and cyclization. This reaction has the advantages of good to excellent chemical yields, operationally simple procedure, and short reaction times.

Supporting Information

 
  • References

    • 1a Dider V. Liang L. Synth. Commun. 2003; 33: 1575
    • 1b Tang Y. Li C. Tetrahedron Lett. 2006; 47: 3823
    • 1c Maghsoodlou MT. Hazeri N. Habibi-Khorassani SM. Ziyaadini M. Marandi G. Barani KK. Ebrahimi P. Rostami Charati F. Sobolev A. Makha M. Heterocycl. Chem. 2009; 46: 843
    • 1d Maghsoodlou MT. Hazeri N. Habibi-Khorassani SM. Marandi G. Nassiri M. Heterocycl. Chem. 2006; 43: 481
    • 1e Oliaruso MA. Wolf JF. Synthesis of Lactones and Lactams . Wiley; New York: 1993
    • 1f Wang HJ. Tang P. Zhou QL. Zhang D. Chen ZT. Huang HX. Qin Y. J. Org. Chem. 2015; 80: 2494
  • 2 Ito Y. Kato H. Saegusa T. J. Org. Chem. 1982; 47: 743

    • For selected recent reviews, see:
    • 3a Bartoli A. Rodier F. Commeiras L. Parrain JL. Chouraqui G. Nat. Prod. Rep. 2011; 28: 763
    • 3b Marson CM. Chem. Soc. Rev. 2011; 40: 5514
    • 3c Xie JH. Zhou QL. Acc. Chem. Res. 2008; 41: 581
    • 3d Saragi TP I. Spehr T. Siebert A. Fuhrmann-Lieker T. Salbeck J. Chem. Rev. 2007; 107: 1011
    • 3e For selected recent examples, see: Liu P. Hong S. Weinreb SM. J. Am. Chem. Soc. 2008; 130: 756

      For selected recent examples, see:
    • 4a Nishikata T. Itonaga K. Yamaguchi N. Sumimoto M. Org. Lett. 2017; 19: 2686
    • 4b Li J. Noyori S. Iwasaki M. Nakajima K. Nishihara Y. Heterocycles 2012; 86: 933
    • 4c Tao X. Zhang Q. Zhang ZG. Liu Q. J. Org. Chem. 2007; 72: 8005
    • 4d Yoshida H. Fukushima H. Morishita T. Ohshita J. Kunai A. Tetrahedron 2007; 63: 4793
    • 4e Singh GS. Desta ZY. Chem. Rev. 2012; 112: 6104

      For selected recent examples for isocyanide-based iminolactonizations, see:
    • 5a Asghari S. Qandalee M. Sarmadi AA. Mol. Diversity 2017; 21: 69
    • 5b Safaei HR. Shioukhi N. Shekouhy M. Monatsh. Chem. 2013; 144: 1855
    • 5c Li J. Liu YJ. Li CJ. Jia XS. Chem. Eur. J. 2011; 17: 7409
    • 5d Esmaeili AA. Vesalipoor H. Synthesis 2009; 1635
    • 5e Hazeri N. Maghsoodlou MT. Habibi-Khorassani SM. Ziyaadini M. Marandi G. Khandan-Barani K. Bijanzadeh HR. ARKIVOC 2007; (xiii): 34
    • 5f Maghsoodlou MT. Hazeri N. Khorassani SM. H. Marandi G. Nassiri M. J. Heterocycl. Chem. 2006; 43: 481
    • 5g Maghsoodlou MT. Khorassani SM. H. Hazeri N. Heydari R. Marandi G. Nassiri M. J. Chem. Res. 2006; 220
    • 5h Maghsoodlou MT. Hazeri N. Habibi-Khorasani SM. Heydari R. Marandi G. Nassiri M. Synth. Commun. 2005; 35: 2569
    • 5i Azizian J. Karimi AR. Mohammadi AA. Mohammadizadeh MR. Heterocycles 2004; 63: 2225
    • 5j Nair V. Vinod AU. Abhilash N. Menon RS. Santhi V. Varma RL. Viji S. Mathew S. Srinivas R. Tetrahedron 2003; 59: 10279
    • 5k Esmaeili AA. Darbanian M. Tetrahedron 2003; 59: 5545
    • 5l Azizian J. Karimi AR. Mohammadi AA. Synth. Commun. 2003; 33: 387
    • 5m Nair V. Vinod AU. Nair JS. Sreekanth AR. Rath NP. Tetrahedron Lett. 2000; 41: 6675
    • 6a Ahmad S. Ali M. Hossien RA. Afshin S. Mol. Diversity 2011; 15: 41
    • 6b Oakes TR. David HG. Nagel FJ. J. Am. Chem. Soc. 1969; 91: 4761
    • 6c Takeo T. Naruyoshi O. Yoshio S. Tomotaka Y. Tetrahedron Lett. 1969; 3407
    • 7a Tanaka K. Yuki Gosei Kagaku Kyokaishi 1990; 48: 16 ; and references cited therein
    • 7b Filler R. Kobayashi Y. Biomedicinal Aspects of Fluorine Chemistry . Kodansha and Elsevier Biomedical; Tokyo and New York: 1982
    • 7c Welch JT. Eswarakrishnan S. Fluorine in Bioorganic Chemistry . John Wiley & Sons; New York: 1991
  • 8 CCDC 1543111 (4g) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. Unit cell parameters (4g): a 17.626(10) Å, b 9.290(5) Å, c 16.098(9) Å; α 90.00°, β 115.041(6)°, γ 90.00°; Space Group: P21/c (14)
  • 9 Hamper BC. Org. Synth. 1992; 70: 246