Synthesis 2018; 50(23): 4525-4538
DOI: 10.1055/s-0037-1610288
review
© Georg Thieme Verlag Stuttgart · New York

Utilization of 1H-Indole-3-carboxaldehyde as a Precursor for the Synthesis of Bioactive Indole Alkaloids

Eslam R. El-Sawy
a   Université de Lorraine, Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), 1 Boulevard Arago, 57070, France   Email: gilbert.kirsch@univ-lorraine.fr
b   Chemistry of Natural Compounds Department, National Research Centre, El-Behoos St. 33, Dokki-Cairo 12622, Egypt
,
Ahmed B. Abdelwahab
a   Université de Lorraine, Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), 1 Boulevard Arago, 57070, France   Email: gilbert.kirsch@univ-lorraine.fr
b   Chemistry of Natural Compounds Department, National Research Centre, El-Behoos St. 33, Dokki-Cairo 12622, Egypt
,
Gilbert Kirsch*
a   Université de Lorraine, Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), 1 Boulevard Arago, 57070, France   Email: gilbert.kirsch@univ-lorraine.fr
› Author Affiliations
This work was supported by the French and Egyptian governments through a co-financed fellowship granted by the French Embassy in Egypt (Institut Français d'Egypte) and the Science and Technology Development Fund (STDF). Additionally, Plant Advanced Technologies (PAT) Company, Nancy, Franceis gratefully acknowledged for funding the postdoc program of A B. Abdelwahab.
Further Information

Publication History

Received: 09 July 2018

Accepted after revision: 23 August 2018

Publication Date:
15 October 2018 (online)


Abstract

Indole alkaloids constitute a large class of natural products and their diverse and complex structures have been attributed to potent biological activities such as anticancer, anti-inflammatory, antimicrobial, antimalarial, antiplasmodial and protein kinase inhibition. The isolation of bioactive compounds from natural sources is difficult, costly and an extremely time-consuming process, therefore synthetic pathways are more convenient than natural separation to deliver such compounds in considerable amounts. In this respect, this review provides comprehensive information on the structures and the synthesis of bioactive indole alkaloids utilizing 1H-indole-3-carboxaldehyde and its derivatives as starting compounds.

1 Overview

2 Phytoalexins

2.1 Brassinin, Cyclobrassinin and Brassitin

2.2 1-Methoxybrassinin, 1-Methoxyspirobrassinol and 1-Methoxyspirobrassinin

2.3 4-Methoxybrassinin and 4-Methoxycyclobrassinin

2.4 Cyclobrassinone

2.5 Brassilexin

2.6 (S)-(–)-Spirobrassinin

2.7 Camalexin

3 Bis(indole) Alkaloids: Rhopaladines A–D

4 Coscinamides A and B

5 α-Cyclopiazonic Acid

6 Dipodazine

7 Isocryptolepine

8 Apparicine

9 Carbazole Alkaloids: Mukonine and Clausine E

10 Indolmycin

11 Conclusion

 
  • References

  • 1 Yannai S. Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients. CRC Press; Boca Raton: 2003
  • 2 Nakajima E. Nakano H. Yamada K. Shigemori H. Hasegawa K. Phytochemistry 2002; 61: 863
  • 3 El-Sawy E. Abo-Salem H. Mandour A. Egypt. J. Chem. 2017; 60: 723
  • 4 Philip NJ. Synder HR. Org. Synth. 1959; 39: 30
  • 5 Dzurilla M. Kutschy P. Zaletova J. Ruzinsky M. Kovacik V. Molecules 2001; 6: 716
  • 6 Kuramochi K. Osada Y. Kitahara T. Tetrahedron 2003; 59: 9447
  • 7 Wang YY. Chen C. J. Chin. Chem. Soc. 2013; 54: 1363
    • 8a González-Lamothe R. Mitchell G. Gattuso M. Diarra MS. Malouin F. Bouarab K. Int. J. Mol. Sci. 2009; 10: 3400
    • 8b Burnett JC. Rossi JJ. Cell Chem. Biol. 2012; 19: 60
  • 9 Herrmann J. Fayad AA. Müller R. Nat. Prod. Rep. 2017; 34: 135
  • 10 Davyt D. Entz W. Fernandez R. Mariezcurrena R. Mombrú AW. Saldaña J. Domínguez L. Coll J. Manta E. J. Nat. Prod. 1998; 61: 1560
  • 11 Lewellyn K. Bialonska D. Chaurasiya ND. Tekwani BL. Loria MJ. White SW. Sufka KJ. Zjawiony JK. Planta Med. 2012; 78: CL22
  • 12 Cimanga K. De Bruyne T. Pieters L. Vlietinck AJ. Turger CA. J. Nat. Prod. 1997; 60: 688
  • 13 Pedras MS. C. Sarwar MG. Suchy M. Adio AM. Phytochemistry 2006; 67: 1503
  • 14 Kumar RN. Suresh T. Mohan PS. Tetrahedron Lett. 2002; 43: 3327
  • 15 Griffiths-Jones CM. Knight DW. Tetrahedron 2011; 67: 8515
  • 16 Pedras MS. C. Nycholat CM. Montaut S. Xu Y. Khan AQ. Phytochemistry 2002; 59: 611
  • 17 Pedras MS. C. Yaya EE. Glawischnig E. Nat. Prod. Rep. 2011; 28: 1381
    • 18a Mezencev R. Mojzis J. Pilatova M. Kutschy P. Neoplasma 2003; 50: 239
    • 18b Pilátová M. Sarisský M. Kutschy P. Mirossay A. Mezencev R. Curillová Z. Suchý M. Monde K. Mirossay L. Mojzis J. Leukemia Res. 2005; 29: 415
  • 19 Takasugi M. Katsui N. Shirata A. J. Chem. Soc., Chem. Commun. 1986; 1077
  • 20 Monde K. Takasugi M. Shirata A. Phytochemistry 1995; 39: 581
  • 21 Kutschy P. Dzurilla M. Takasugi M. Török M. Achbergerová I. Homzová R. Rácová M. Tetrahedron 1998; 54: 3549
  • 22 Pedras MS. C. Jha M. Ahiahonu PW. K. Curr. Org. Chem. 2003; 7: 1635
    • 23a Kutschy P. Suchý M. Monde K. Harada N. Marušková R. Čurillová Z. Dzurilla M. Miklošová M. Mezencev R. Mojžiš J. Tetrahedron Lett. 2002; 43: 9489
    • 23b Budovská M. Tischlerová V. Mojžiš J. Harvanová M. Kozlov O. Gondová T. Tomášková N. Tetrahedron 2017; 73: 6356
  • 24 Pedras MS. C. Zheng Q.-A. Strelkov S. J. Agric. Food Chem. 2008; 56: 9949
  • 25 Pedras MS. C. Chem. Commun. 1998; 1565
  • 26 Budovská M. Kutschy P. Kožár T. Gondová T. Petrovaj J. Tetrahedron 2013; 69: 1092
  • 27 Browne LM. Conn KL. Ayert WA. Tewari JP. Tetrahedron 1991; 47: 3909
  • 28 Tsuji J. Jackson EP. Gage DA. Hammerschmidt R. Somerville SC. Plant Physiol. 1992; 98: 1304
  • 29 Jimenez LD. Ayer WA. Tewari JP. Phytoprotection 1997; 78: 99
  • 30 Zook M. Leege L. Jacobson D. Hammerschmidt R. Phytochemistry 1998; 49: 2287
  • 31 Pedras MS. C. Liu J. Org. Biomol. Chem. 2004; 2: 1070
  • 32 Sabol M. Kutschy P. Siegfried L. Miroššay A. Suchý M. Hrbková H. Dzurilla M. Marušková R. Starková J. Paulíková E. Biologia 2000; 55: 701
  • 33 Mehta RG. Liu J. Constantinou A. Thomas CF. Hawthorne M. You M. Gerhüser C. Pezzuto JM. Moon RC. Moriarty RM. Carcinogenesis 1995; 16: 399
  • 34 Munn DH. Mellor AL. J. Clin. Invest. 2007; 117: 1147
  • 35 Izutani Y. Yogosawa S. Sowa Y. Sakai T. Int. J. Oncol. 2012; 40: 816
  • 36 Gao N. Zhang Z. Jiang B.-H. Shi X. Biochem. Biophys. Res. Commun. 2003; 310: 1124
  • 37 Lee JH. Kim C. Sethi G. Ahn KS. Oncotarget 2015; 6: 6386
  • 38 Kim S.-M. Oh EY. Lee JH. Nam D. Lee SG. Lee J. Kim S.-H. Shim BS. Ahn KS. Phytother. Res. 2015; 29: 1828
  • 39 Mezencev R. Mojžiš J. Pilátová M. Kutschy P. Èurillová Z. Int. J. Cancer Prev. 2004; 1: 105
  • 40 Chripkova M. Drutovic D. Pilatova M. Mikes J. Budovska M. Vaskova J. Broggini M. Mirossay L. Mojzis J. Toxicol. In Vitro 2014; 28: 909
  • 41 Pedras MS. C. Suchý M. Org. Biomol. Chem. 2006; 4: 3526
  • 42 Tempête C. Devys M. Barbier M. Z. Naturforsch., C: Biosci. 1991; 46: 706
  • 43 Mezencev R. Updegrove T. Kutschy P. Repovská M. McDonald JF. J. Nat. Med. 2011; 65: 488
  • 44 Smith B. Randle D. Mezencev R. Thomas L. Hinton C. Odero-Marah V. Molecules 2014; 19: 3988
  • 45 Janosik T. Johnson A.-L. Bergman J. Tetrahedron 2002; 58: 2813
  • 46 Ma Y. Yakushijin K. Miyake F. Horne D. Tetrahedron Lett. 2009; 50: 4343
  • 47 Uka V. Moore GG. Arroyo-Manzanares N. Nebija D. De Saeger S. Diana Di Mavungu J. Toxins 2017; 9: 35
  • 48 Kuilman-Wahls ME. M. Vilar MS. de Nijs-Tjon L. Maas RF. M. Fink-Gremmels J. Environ. Toxicol. Pharmacol. 2002; 11: 207
  • 49 Johnson A.-L. Janosik T. Bergman J. ARKIVOC 2002; (viii): 57
  • 50 Sjögren M. Johnson A.-L. Hedner E. Dahlström M. Göransson U. Shirani H. Bergman J. Jonsson PR. Bohlin L. Peptides 2006; 27: 2058
  • 51 Hingane DG. Kusurkar RS. Tetrahedron Lett. 2011; 52: 3686
    • 52a Ghosh P. Purkayastha P. RSC Adv. 2014; 4: 22442
    • 52b Dhanabal T. Sangeetha R. Mohan PS. Tetrahedron 2006; 62: 6258
    • 53a Grellier P. Ramiaramanana L. Millerioux V. Deharo E. Schrével J. Frappier F. Trigalo F. Bodo B. Pousset J.-L. Phytother. Res. 1996; 10: 317
    • 53b Whittell LR. Batty KT. Wong RP. M. Bolitho EM. Fox SA. Davis TM. E. Murray PE. Bioorg. Med. Chem. 2011; 19: 7519
  • 54 Aroonkit P. Thongsornkleeb C. Tummatorn J. Krajangsri S. Mungthin M. Ruchirawat S. Eur. J. Med. Chem. 2015; 94: 56
  • 55 Carroll AR. Addepalli R. Fechner G. Smith J. Guymer GP. Forster PI. Quinn RJ. J. Nat. Prod. 2008; 71: 1063
  • 56 Chen A.-H. Liu Y.-P. Wang Z.-X. Ma Y.-L. Jiang Z.-H. Lai L. Guo R.-R. Long J.-T. Lin S.-X. Liu W. Fu Y.-H. Heterocycles 2017; 94: 743
  • 57 Bennasar M.-L. Zulaica E. Solé D. Roca T. García-Díaz D. Alonso S. J. Org. Chem. 2009; 74: 8359
  • 58 Brenna E. Fuganti C. Serra S. Tetrahedron 1998; 54: 1585
  • 59 Bringmann G. Tasler S. Endress H. Peters K. Peters E.-M. Synthesis 1998; 1501
  • 60 Liger F. Popowycz F. Besson T. Picot L. Galmarini CM. Joseph B. Bioorg. Med. Chem. 2007; 15: 5615
  • 61 Williams TL. Yin YW. Carter CW. J. Biol. Chem. 2016; 291: 255
  • 62 Marsh WS. Garretson AL. Wesel EM. Antibiot. Chemother. 1960; 10: 316
  • 63 Brown MJ. Carter PS. Fenwick AS. Fosberry AP. Hamprecht DW. Hibbs MJ. Jarvest RL. Mensah L. Milner PH. O’Hanlon PJ. Pope AJ. Richardson CM. West A. Witty DR. Bioorg. Med. Chem. Lett. 2002; 12: 3171
  • 64 Shue Y.-K. Tetrahedron Lett. 1996; 37: 6447
    • 65a Hurdle JG. O’Neill AJ. Chopra I. J. Antimicrob. Chemother. 2004; 54: 549
    • 65b Kanamaru T. Nakano Y. Toyoda Y. Miyagawa K.-I. Tada M. Kaisho T. Nakao M. Antimicrob. Agents Chemother. 2001; 45: 2455
  • 66 Preobrazhenskaya MN. Balashova EG. Turchin KF. Padeiskaya EN. Uvarova NV. Pershin GN. Suvorov NN. Tetrahedron 1968; 24: 6131