Synthesis 2019; 51(03): 693-703
DOI: 10.1055/s-0037-1610267
paper
© Georg Thieme Verlag Stuttgart · New York

Mn(II)-Catalyzed N-Acylation of Amines

Juan Ma
,
Jingyu Zhang
,
Hang Gong*
The Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education College of Chemistry, Xiangtan University, Xiangtan 411105, P. R of China   Email: hgong@xtu.edu.cn
› Author Affiliations
Financial support from the National Natural Science Foundation of China (No. 21402168), Scientific Research Foundation of Hunan Provincial Education Department (No. 15B232) is gratefully acknowledged.
Further Information

Publication History

Received: 28 February 2018

Accepted after revision: 11 August 2018

Publication Date:
04 September 2018 (online)


Abstract

A practical protocol has been developed here for the Mn(II)-catalyzed N-acylation of amines with high yields using N,N-dimethylformamide and other amides as the carbonyl source. The protocol is simple, does not require any acid, base, ligand, or other additives, and encompasses a broad substrate scope for primary, secondary, and heterocyclic amines.

Supporting Information

 
  • References

    • 2a Tchounwou PB. Yedjou CG. Patlolla AK. Sutton DJ. Molecular, Clinical and Environmental Toxicology . In Experientia Supplementum . Vol. 101. Springer; Basel: 2012: 133
    • 2b Gilani SH. Alibhai Y. J. Toxicol. Environ. Health. 1990; 30: 23
  • 3 In March 2016, the prices for manganese, platinum, palladium, rhodium, iridium, and ruthenium were 0.00206, 29.9, 31.70, 42.44, 31.19, and 2.57 USD/g, respectively, see: http://www.infomine.com/investment/metal-prices/.
    • 4a Liu W. Ackermann L. ACS Catal. 2016; 6: 3743
    • 4b McGarrigle EM. Gilheany DG. Chem. Rev. 2005; 105: 1563
    • 5a Huang X. Zhuang T. Kates PA. Gao H. Chen X. Groves JT. J. Am. Chem. Soc. 2017; 139: 15407
    • 5b Chakraborty S. Das UK. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
    • 5c Oderinde MS. Nuhant P. Genovino J. Juneau A. Gagné Y. Allais C. Chinigo G. Choi C. Sach N. Bernier L. Bundesmann M. Khunte B. Frenette M. Fadeyi OO. Fobian Y. Angew. Chem. Int. Ed. 2017; 56: 15309
    • 5d Wang H. Pesciaioli F. Oliveira JC. A. Warratz S. Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 15063
    • 5e Mastalir M. Pittenauer E. Allmaier G. Kirchner K. J. Am. Chem. Soc. 2017; 139: 8812
    • 5f Liang Y.-F. Müller V. Liu W. Münch A. Stalke D. Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 9415
    • 5g Wang H. Lorion MM. Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 6339
    • 5h Wang C. Wang A. Rueping M. Angew. Chem. Int. Ed. 2017; 56: 9935
    • 5i Lu Q. Greßies S. Klauck FJ. R. Glorius F. Angew. Chem. Int. Ed. 2017; 56: 6660
    • 5j Sato T. Yoshida T. Mamari HH. A. Ilies L. Nakamura E. Org. Lett. 2017; 19: 5458
    • 5k Zell D. Dhawa U. Müller V. Bursch M. Grimme S. Ackermann L. ACS Catal. 2017; 7: 4209
    • 5l Gebauer K. Reuß F. Spanka M. Schneider C. Org. Lett. 2017; 19: 4588
    • 5m Liu S.-L. Li Y. Guo J.-R. Yang G.-C. Li X.-H. Gong J.-F. Song M.-P. Org. Lett. 2017; 19: 4042
    • 5n Ni J. Zhao H. Zhang A. Org. Lett. 2017; 19: 3159
    • 5o Liu W. Zell D. John M. Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 4092
    • 5p Zhou B. Chen H. Wang C. J. Am. Chem. Soc. 2013; 135: 1264
    • 6a Sharma RK. Yadav M. Monga Y. Gaur R. Adholeya A. Zboril R. Varma RS. Gawande MB. ACS Sustainable Chem. Eng. 2016; 4: 1123
    • 6b Sfrazzetto GT. Millesi S. Pappalardo A. Toscano RM. Ballistreri FP. Tomaselli GA. Gulino A. Catal. Sci. Technol. 2015; 5: 673
    • 6c Rich J. Manrique E. Molton F. Duboc C. Collomb M.-N. Rodríguez M. Romero I. Eur. J. Inorg. Chem. 2014; 2663
    • 6d Saisaha P. Boer JW. Browne WR. Chem. Soc. Rev. 2013; 42: 2059
    • 6e Lane BS. Vogt M. DeRose VJ. Burgess K. J. Am. Chem. Soc. 2002; 124: 11946
    • 6f Wu M. Wang B. Wang S. Xia C. Sun W. Org. Lett. 2009; 11: 3622
    • 6g Maayan G. Christou G. Inorg. Chem. 2011; 50: 7015
    • 7a Vasilenko V. Blasius CK. Wadepohl H. Gade LH. Angew. Chem. Int. Ed. 2017; 56: 8393
    • 7b Bauer JO. Chakraborty S. Milstein D. ACS Catal. 2017; 7: 4462
    • 7c Bruneau-Voisine A. Wang D. Dorcet V. Roisnel T. Darcel C. Sortais J.-B. Org. Lett. 2017; 19: 3656
    • 7d Ma X. Zuo Z. Liu G. Huang Z. ACS Omega 2017; 2: 4688
    • 7e Elangovan S. Garbe M. Jiao H. Spannenberg A. Junge K. Beller M. Angew. Chem. Int. Ed. 2016; 55: 15364
    • 8a Yliheikkilä K. Axenov K. Räisänen MT. Klinga M. Lankinen MP. Kettunen M. Leskelä M. Repo T. Organometallics 2007; 26: 980
    • 8b Nabika M. Seki Y. Miyatake T. Ishikawa Y. Okamoto K. Fujisawa K. Organometallics 2004; 23: 4335
    • 9a Liu W. Huang X. Cheng M.-J. Nielsen RJ. Goddard WA. III. Groves JT. Science (Washington, D. C.) 2012; 337: 1322
    • 9b Fu S. Shao Z. Wang Y. Liu Q. J. Am. Chem. Soc. 2017; 139: 11941
    • 9c Espinosa-Jalapa NA. Kumar A. Leitus G. Diskin-Posner Y. Milstein D. J. Am. Chem. Soc. 2017; 139: 11722
    • 9d Kumar A. Espinosa-Jalapa NA. Leitus G. Diskin-Posner Y. Avram L. Milstein D. Angew. Chem. Int. Ed. 2017; 56: 14992
    • 9e Andérez-Fernández M. Vogt LK. Fischer S. Zhou W. Jiao H. Garbe M. Elangovan S. Junge K. Junge H. Ludwig R. Beller M. Angew. Chem. Int. Ed. 2017; 56: 559
    • 9f Deibl N. Kempe R. Angew. Chem. Int. Ed. 2017; 56: 1663
    • 9g Mastalir M. Glatz M. Pittenauer E. Allmaier G. Kirchner K. J. Am. Chem. Soc. 2016; 138: 15543
    • 9h Milan M. Carboni G. Salamone M. Costas M. Bietti M. ACS Catal. 2017; 7: 5903
    • 9i Li P. Zhao J. Li X. Li F. J. Org. Chem. 2017; 82: 4569
    • 9j Huang X. Bergsten TM. Groves JT. J. Am. Chem. Soc. 2015; 137: 5300
    • 9k McMahon CM. Renn MS. Alexanian EJ. Org. Lett. 2016; 18: 4148
    • 9l Peña-López M. Piehl P. Elangovan S. Neumann H. Beller M. Angew. Chem. Int. Ed. 2016; 55: 14967
    • 9m Huang X. Liu W. Hooker JM. Groves JT. Angew. Chem. Int. Ed. 2015; 54: 5241
    • 9n Liu W. Groves JT. Angew. Chem. Int. Ed. 2013; 52: 6024
    • 10a Pattabiraman VR. Bode JW. Nature (London) 2011; 480: 471
    • 10b Lundberg H. Tinnis F. Selander N. Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
    • 10c Humphrey JM. Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 10d Cupido T. Tulla-Puche J. Spengler J. Albericio F. Curr. Opin. Drug Discovery Dev. 2007; 10: 768
    • 10e Deming TJ. Prog. Polym. Sci. 2007; 32: 858
    • 10f Chen BC. Bednarz MS. Zhao R. Sundeen JE. Chen P. Shen Z. Skoumbourdis AP. Barrish JC. Tetrahedron Lett. 2000; 41: 5453
    • 11a Hett R. Fang QK. Gao Y. Wald SA. Senanayake CH. Org. Process Res. Dev. 1998; 2: 96
    • 11b Choi D. Stables JP. Kohn H. J. Med. Chem. 1996; 39: 1907
    • 11c Ma G. Zancanella M. Oyola Y. Richardson RD. Smith JW. Romo D. Org. Lett. 2006; 8: 4497
    • 11d Forsch RA. Rosowsky A. J. Org. Chem. 1985; 50: 2582
    • 11e Batchelor FR. Doyle FP. Nayler JH. C. Rolinson GN. Nature (London) 1959; 183: 257
    • 11f Polyimides Fundamentals and Applications . Ghosh MK. Mittal KL. Marcel Dekker; New York: 1996
    • 12a Sonawane RB. Rasal NK. Jagtap SV. Org. Lett. 2017; 19: 2078
    • 12b Wang Y. Wang F. Zhang C. Zhang J. Lia M. Xu J. Chem. Commun. 2014; 50: 2438
    • 12c Becerra-Figueroa L. Ojeda-Porras A. Gamba-Sánchez D. J. Org. Chem. 2014; 79: 4544
    • 12d Thale PB. Borase PN. Shankarling GS. RSC Adv. 2016; 6: 52724
    • 12e Zhang M. Imm S. Bähn S. Neubert L. Neumann H. Beller M. Angew. Chem. Int. Ed. 2012; 51: 3905
    • 12f Rao SN. Mohan DC. Adimurthy S. Org. Lett. 2013; 15: 1496
    • 12g Nguyen TB. Sorres J. Tran MQ. Ermolenko L. Al-Mourabit A. Org. Lett. 2012; 14: 3202
    • 12h El Dine TM. Evans D. Rouden J. Blanchet J. Chem.–Eur. J. 2016; 22: 5894
    • 12i Lanigan RM. Starkov P. Sheppard TD. J. Org. Chem. 2013; 78: 4512
    • 12j Suchy M. Elmehriki AA. H. Hudson RH. E. Org. Lett. 2011; 13: 3952
    • 12k Chikkulapalli A. Aavula SK. Rifahath MN. P. Karthikeyan C. Vinodh KC. H. Manjunatha SG. Shanmugam S. Tetrahedron Lett. 2015; 56: 3799
    • 12l Allen CL. Atkinson BN. Williams JM. J. Angew. Chem. Int. Ed. 2012; 51: 1383
    • 13a Hosseini-Sarvari M. Sharghi H. J. Org. Chem. 2006; 71: 6652
    • 13b Chen Z. Fu R. Chai W. Zheng H. Sun L. Lu Q. Yuan R. Tetrahedron 2014; 70: 2237
    • 13c Das B. Krishnaiah M. Balasubramanyam P. Veeranjaneyulu B. Nandankumar D. Tetrahedron Lett. 2008; 49: 2225
    • 13d Brahmachari G. Laskar S. Tetrahedron Lett. 2010; 51: 2319
    • 13e Aleiwi BA. Mitachi K. Kurosu M. Tetrahedron Lett. 2013; 54: 2077
    • 13f Rahman M. Kundu D. Hajra A. Majee A. Tetrahedron Lett. 2010; 51: 2896
    • 13g Reddy PG. Kumar GD. K. Baskaran S. Tetrahedron Lett. 2000; 41: 9149
    • 14a Chakraborty S. Gellrich U. Diskin-Posner Y. Leitus G. Avram L. Milstein D. Angew. Chem. Int. Ed. 2017; 56: 4229
    • 14b Kang B. Hong SH. Adv. Synth. Catal. 2015; 357: 834
    • 14c Ortega N. Richter C. Glorius F. Org. Lett. 2013; 15: 1776
    • 14d Tanaka S. Minato T. Ito E. Hara M. Kim Y. Yamamoto Y. Asao N. Chem.–Eur. J. 2013; 19: 11832
    • 14e Xu B. Madix RJ. Friend CM. Chem.–Eur. J. 2012; 18: 2313
    • 15a Hie L. Fine Nathel NF. Hong X. Yang Y.-F. Houk KN. Garg NK. Angew. Chem. Int. Ed. 2016; 55: 2810
    • 15b Sharley DD. S. Williams JM. J. Chem. Commun. 2017; 53: 2020
    • 15c Gnanaprakasam B. Milstein D. J. Am. Chem. Soc. 2011; 133: 1682
    • 15d Muñoz J. deM. Alcázar J. de la Hoz A. Díaz-Ortizb Á. de Diego S.-AA. Green Chem. 2012; 14: 1335
    • 15e Ohshima T. Hayashi Y. Agura K. Fujii Y. Yoshiyama A. Mashima K. Chem. Commun. 2012; 48: 5434
    • 16a Zhang L. Han Z. Zhao X. Wang Z. Ding K. Angew. Chem. Int. Ed. 2015; 54: 618
    • 16b Das S. Bobbink FD. Bulut S. Soudani M. Dyson PJ. Chem. Commun. 2016; 52: 2497
    • 17a Ding S. Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226
    • 17b Muzart J. Tetrahedron 2009; 65: 8313
    • 17c Ohtaki H. Pure Appl. Chem. 1987; 59: 1143
    • 17d Kobayashi S. Sugiura M. Ogawa C. Adv. Synth. Catal. 2004; 346: 1023
    • 17e Pastoriza-Santos I. Liz-Marzan LM. Adv. Funct. Mater. 2009; 19: 679
  • 18 Gu DW. Guo XX. Tetrahedron 2015; 71: 9117
  • 19 Wirth DD. Baertschi SW. Johnson RA. Maple SR. Miller MS. Hallenbeck DK. Gregg SM. J. Pharm. Sci. 1998; 87: 31
  • 20 Stubba D. Lahm G. Geffe M. Runyon JW. Arduengo AJ. III. Opatz T. Angew. Chem. Int. Ed. 2015; 54: 14187
  • 21 Lv H. Xing Q. Yue C. Lei Z. Li F. Chem. Commun. 2016; 52: 6545
  • 22 Shinohara T. Takeda A. Toda J. Ueda Y. Kohno M. Sano T. Chem. Pharm. Bull. 1998; 46: 918
  • 23 Lewin AH. Frucht M. Org. Magn. Reson. 1975; 7: 206
  • 24 Nguyen TV. Q. Yoo W.-J. Kobayashi S. Angew. Chem. Int. Ed. 2015; 54: 9209
  • 25 Zhao Y. Cai S. Li J. Wang DZ. Tetrahedron 2013; 69: 8129
  • 26 Zhang L. Han Z. Zhao X. Wang Z. Ding K. Angew. Chem. Int. Ed. 2015; 54: 6186
  • 27 Ke Z. Zhang Y. Cui X. Shi F. Green Chem. 2016; 18: 808
  • 28 Katritzky AR. Yao G. Lan X. Zhao X. J. Org. Chem. 1993; 58: 2086
  • 29 Nancy B. Till O. J. Org. Chem. 2011; 76: 9777
  • 30 Nakamura T. Tateishi K. Tsukagoshi S. Hashimoto S. Watanabe S. Soloshonok VA. Aceña JL. Kitagawa O. Tetrahedron 2012; 68: 4013
  • 31 Akikusa N. Mitsui K. Sakamoto T. Kikugawa Y. Synthesis 1992; 1058
  • 32 Singh T. Stein RG. Hoops JF. Biel JH. Hoya WK. Cruz DR. J. Med. Chem. 1971; 14: 283
  • 33 Bélanger G. Darsigny V. Doré M. Lévesque F. Org. Lett. 2010; 12: 1396
  • 34 Henry C. Bolien D. Ibanescu B. Bloodworth S. Harrowven DC. Zhang X. Craven A. Sneddon HF. Whitby RJ. Eur. J. Org. Chem. 2015; 1491
  • 35 Aubert C. Huard-Perrio C. Lasne M.-C. J. Chem. Soc., Perkin Trans. 1 1997; 2837
  • 36 Zhang M.-Z. Guo Q.-H. Sheng W.-B. Guo C.-C. Adv. Synth. Catal. 2015; 357: 2855
  • 37 Bouasla R. Bechlem K. Belhani B. Orient. J. Chem. 2017; 33: 1454
  • 38 Ueno R. Shirakawa E. Org. Biomol. Chem. 2014; 12: 7469
  • 39 Master HE. Khan SI. Poojari KA. Indian J. Chem. 2008; 47: 97
  • 40 Toshimichi O. Tomotsugu A. Michinori S. J. Am. Chem. Soc. 2010; 132: 13191
  • 41 Funder ED. Trads JB. Gothelf KV. Org. Biomol. Chem. 2015; 13: 185