Synlett 2018; 29(17): 2225-2237
DOI: 10.1055/s-0037-1610203
account
© Georg Thieme Verlag Stuttgart · New York

From Straightforward Gold(I)-Catalyzed Enyne Cyclizations to more Demanding Intermolecular Reactions of Alkynes with Alkenes

Cristina García-Morales
a   Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain   Email: aechavarren@iciq.es
b   Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
,
Antonio M. Echavarren*
a   Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain   Email: aechavarren@iciq.es
b   Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
› Author Affiliations
We thank Agencia Estatal de Investigación (AEI)/FEDER, UE (CTQ2016-75960-P and FPI Fellowship to C.G.M.), Severo Ochoa Excellence Accreditation 2014-2018 (SEV-2013-0319), the European Research Council (Advanced Grant No. 321066), the AGAUR (2017 SGR 1257), and CERCA Program/Generalitat de Catalunya for financial support.
Further Information

Publication History

Received: 17 May 2018

Accepted after revision: 10 June 2018

Publication Date:
19 July 2018 (online)


Abstract

Gold(I) complexes are the catalysts of choice for the selective activation of alkynes in the presence of other unsaturated functional groups. In this Account, we present the development of gold(I)-catalyzed intermolecular reactions of terminal alkynes with functionalized alkenes. In particular, we focus on the synthesis of cyclobutenes by asymmetric gold(I)-catalyzed [2+2] cycloaddition and its applications.

1 Introduction

2 Intramolecular Gold(I)-Catalyzed Synthesis of Cyclobutenes

2.1 Role of Cyclobutenes in 1,n-Enynes Cycloisomerizations

2.2 [2+2] Cycloaddition of 1,n-Enynes

3 Intermolecular Gold(I)-Catalyzed Reactions of Terminal Alkynes with Alkenes

3.1 [2+2] Cycloaddition of Alkynes with Alkenes

3.2 Reactions of Propiolic Acid with Alkenes

3.3 [2+2+2] Cycloaddition of Alkynes with Oxoalkenes

3.4 Reaction of Alkynes with Furanes

4 Gold(I)-Catalyzed Enantioselective Synthesis of Cyclobutenes

5 Concluding Remarks

 
  • References

    • 1a Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 1b Shapiro ND. Toste FD. Synlett 2010; 675
    • 1c Obradors C. Echavarren AM. Acc. Chem. Res. 2014; 47: 902
    • 1d Fensterbank L. Malacria M. Acc. Chem. Res. 2014; 47: 953
    • 1e Dorel R. Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 1f Pflästerer D. Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 1331
    • 1g Echavarren AM. Muratore MN. López-Carrillo V. Escribano-Cuesta A. Huguet A. Obradors C. Org. React. . 2017. Vol. 92: Chap 1
  • 2 Teles JH. Brode S. Chabanas M. Angew. Chem. Int. Ed. 1998; 37: 1415
  • 3 Mizushima E. Sato K. Hayashi T. Tanaka M. Angew. Chem. Int. Ed. 2002; 41: 4563
  • 4 Hashmi AS. K. Frost TM. Bats JW. J. Am. Chem. Soc. 2000; 122: 11553
    • 5a Brown TJ. Dickens MG. Widenhoefer RA. J. Am. Chem. Soc. 2009; 131: 6350
    • 5b Brown TJ. Dickens MG. Widenhoefer RA. Chem. Commun. 2009; 6451
    • 5c Brown TJ. Widenhoefer RA. J. Organomet. Chem. 2011; 696: 1216
    • 5d Brooner RE. M. Widenhoefer RA. Angew. Chem. Int. Ed. 2013; 52: 11714
  • 6 Urbano J. Hormigo AJ. de Frémont P. Nolan PS. Díaz-Requejo MM. Pérez PJ. Chem. Commun. 2008; 759
  • 7 Muratore ME. Homs A. Obradors C. Echavarren AM. Chem. Asian. J. 2014; 9: 3066
    • 9a Hamilton GL. Kang EJ. Mba M. Toste FD. Science 2007; 317: 496
    • 9b Aikawa K. Kojima M. Mikami K. Angew. Chem. Int. Ed. 2009; 48: 6073
    • 9c Aikawa K. Kojima M. Mikami K. Adv. Synth. Catal. 2010; 352: 3131
    • 9d Tu X. Gong L. Angew. Chem. Int. Ed. 2012; 51: 11346
    • 10a Francos J. Grande-Carmona F. Faustino H. Iglesias-Sigüenza J. Díez E. Alonso I. Fernández R. Lassaletta JM. López F. Ujaque G. Chem. Eur. J. 2013; 19: 15248
    • 10b Suárez-Pantiga S. Hernández-Díaz C. Rubio E. González JM. Angew. Chem. Int. Ed. 2012; 51: 11552
    • 10c Li GH. Zhou W. Li W. Bi QW. Wang Z. Zhao GZ. Hu WX. Chen Z. Chem. Commun. 2013; 49: 4770
    • 10d Varela I. Faustino H. Díez E. Iglesias-Sigüenza J. Grande-Carmona F. Fernández R. Lassaletta JM. Mascareñas JL. López F. ACS Catal. 2017; 7: 2397

      Leading references:
    • 11a Snyder SA. Tang Z.-Y. Gupta R. J. Am. Chem. Soc. 2009; 131: 5744
    • 11b Denmark SE. Jaunet A. J. Am. Chem. Soc. 2013; 135: 6419
    • 11c Denmark SE. Hartmann E. Kornfilt DJ. P. Wang H. Nat. Chem. 2014; 6: 1056
    • 11d Denmark SE. Carson N. Org. Lett. 2015; 17: 5728
    • 11e Cresswell AJ. Eey ST.-C. Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
    • 11f Hu DX. Seidl FJ. Bucher C. Burns NZ. J. Am. Chem. Soc. 2015; 137: 3795
    • 11g Landry ML. Hu DX. McKenna GM. Burns NZ. J. Am. Chem. Soc. 2016; 138: 5150
    • 11h Denmark SE. Ryabchuk P. Burk MT. Gilbert BB. J. Org. Chem. 2016; 81: 10411
    • 11i Samanta RS. Yamamoto H. J. Am. Chem. Soc. 2017; 139: 1460
  • 12 Nieto-Oberhuber C. Muñoz MP. Buñuel E. Nevado C. Cárdenas DJ. Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 2402
  • 13 Nieto-Oberhuber C. López S. Muñoz MP. Cárdenas DJ. Buñuel E. Nevado C. Echavarren AM. Angew. Chem. Int. Ed. 2005; 44: 6146
  • 14 Escribano-Cuesta A. Pérez-Galán P. Herrero-Gómez E. Sekine M. Braga AA. C. Maseras F. Echavarren AM. Org. Biomol. Chem. 2012; 10: 6105
    • 15a Hashmi AS. K. Angew. Chem. Int. Ed. 2008; 47: 6754
    • 15b Cianleoni G. Biasiolo L. Bistoni G. Macchioni A. Tarantelli F. Zuccaccia D. Belpassi L. Chem. Eur. J. 2015; 21: 2467
    • 16a Benitez D. Shapiro ND. Tkatchouk E. Wang Y. Goddard WA. III. Toste D. F. 2009; 1: 482
    • 16b Echavarren AM. Nat. Chem. 2009; 1: 431
    • 17a Wang Y. Muratore ME. Echavarren AM. Chem. Eur. J. 2015; 21: 7332
    • 17b Caballero A. Pérez PJ. Chem. Eur. J. 2017; 58: 14389
    • 18a Steinborn D. Beckea S. Herzoga R. Günter M. Kircheisen R. Stoeckli-Evans H. Bruhn C. Z. Anorg. Allg. Chem. 1968; 624: 1303
    • 18b Nesmeyanov AN. Perevalova EG. Smyslova EI. Dyadchenko VP. Grandberg KI. Izv. Akad. Nauk SSSR, Ser. Khim. 1977; 2610
  • 19 Sarria Toro JM. García-Morales C. Raducan M. Smirnova ES. Echavarren AM. Angew. Chem. Int. Ed. 2017; 56: 1859
  • 20 Nieto-Oberhuber C. López S. Echavarren AM. J. Am. Chem. Soc. 2005; 127: 6178
  • 21 Nieto-Oberhuber C. Pérez-Galán P. Herrero-Gómez E. Lauterbach T. Rodríguez C. López S. Bour C. Rosellón A. Cárdenas DJ. Echavarren AM. J. Am. Chem. Soc. 2008; 130: 269
    • 22a Brooner RE. M. Brown TJ. Widenhoefer RA. Angew. Chem. Int. Ed. 2013; 52: 1
    • 22b Brooner RE. M. Robertson BD. Widenhoefer RA. Organometallics 2014; 33: 6466
  • 23 Kim N. Brooner RE. M. Widenhoefer RA. Organometallics 2017; 36: 673
  • 24 Odabachian Y. Gagosz F. Adv. Synth. Catal. 2009; 351: 379
  • 25 Inagaki F. Matsumoto C. Okada Y. Maruyama N. Mukai C. Angew. Chem. Int. Ed. 2015; 54: 818
  • 26 Iwai T. Ueno M. Okochi H. Sawamura M. Adv. Synth. Catal. 2018; 360: 670
  • 27 Obradors C. Leboeuf D. Aydin J. Echavarren AM. Org. Lett. 2013; 15: 1576
  • 28 Homs A. Obradors C. Leboeuf D. Echavarren AM. Adv. Synth. Catal. 2014; 356: 221
  • 29 Ranieri B. Obradors C. Mato M. Echavarren AM. Org. Lett. 2016; 18: 1614
  • 30 López-Carrillo V. Echavarren AM. J. Am. Chem. Soc. 2010; 132: 9292
    • 31a Wei C. Li CJ. J. Am. Chem. Soc. 2003; 125: 9584
    • 31b Lavallo V. Frey GD. Kousar S. Donna-dieu B. Bertrand G. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 13569
    • 31c Hooper TN. Green M. Russell CA. Chem. Commun. 2010; 46: 2313
    • 31d Simonneau A. Jaroschik F. Lesage D. Karanik M. Guillot R. Malacria M. Tabet J.-C. Goddard J.-P. Fensterbank L. Gandon V. Gimbert Y. Chem. Sci. 2011; 2: 2417
    • 31e Grirrane A. Garcia H. Corma A. Alvarez E. ACS Catal. 2011; 1: 1647
    • 31f Brown TJ. Widenhoefer RA. Organometallics 2011; 30: 6003
    • 31g Raducan M. Moreno M. Bour C. Echavarren AM. Chem. Commun. 2012; 48: 52
    • 31h Gómez-Suárez A. Dupuis S. Slawin AM. Z. Nolan SP. Angew. Chem. Int. Ed. 2013; 52: 938; Angew. Chem. 2013, 125, 972
    • 32a Ye L. Wang Y. Aue DH. Zhang L. J. Am. Chem. Soc. 2012; 134: 31
    • 32b Hashmi AS. K. Braun I. Rudolph M. Rominger F. Organometallics 2012; 31: 644
    • 32c Hashmi AS. K. Lauterbach T. Nösel P. Vilhelmsen MH. Rudolph M. Rominger F. Chem. Eur. J. 2013; 19: 1058
    • 32d Hashmi AS. K. Wieteck M. Braun I. Nösel P. Jongbloed L. Rudolph M. Rominger M. Adv. Synth. Catal. 2012; 354: 555
    • 32e Hansmann MM. Rudolph M. Rominger F. Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 2593
    • 32f Wang Y. Yepremyan A. Ghorai S. Todd R. Aue DH. Zhang L. Angew. Chem. Int. Ed. 2013; 52: 7795
    • 32g Larsen MH. Houk KN. Hashmi AS. K. J. Am. Chem. Soc. 2015; 137: 10668
    • 32h Asiri AM. Hashmi AS. K. Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 4471
    • 33a Cheong PH.-Y. Morganelli P. Luzung MR. Houk KN. Toste FD. J. Am. Chem. Soc. 2008; 130: 4517
    • 33b Jaroschik F. Simonneau A. Lemière G. Cariou K. Agenet N. Amouri H. Aubert C. Goddard J.-P. Lesage D. Malacria M. Gimbert Y. Gandon V. Fensterbank L. ACS Catal. 2016; 6: 5146
  • 34 Ferrer S. Echavarren AM. Organometallics 2018; 37: 781
  • 35 de Orbe ME. Amenós L. Kirillova MS. Wang Y. López-Carrillo V. Maseras F. Echavarren AM. J. Am. Chem. Soc. 2017; 139: 10302
  • 36 de Orbe M. E., Echavarren A. M.; Eur. J. Org. Chem.; 2018, in press; DOI: 10.1002/ejoc.201800170.
  • 37 Bai Y. Luo Z. Wang Y. Gao J. Zhang L. J. Am. Chem. Soc. 2018; 140: 5860
  • 38 Yeom H.-S. Koo J. Park H.-S. Wang Y. Liang Y. Yu Z.-X. Shin S. J. Am. Chem. Soc. 2012; 134: 208
  • 39 Jiménez-Núñez E. Claverie CK. Nieto-Oberhuber C. Echavarren AM. Angew. Chem. Int. Ed. 2006; 45: 5452
  • 40 Jiménez-Núñez E. Molawi K. Echavarren AM. Chem. Commun. 2009; 7327
  • 41 Molawi K. Delpont N. Echavarren AM. Angew. Chem. Int. Ed. 2010; 49: 3517
  • 42 Obradors C. Echavarren AM. Chem. Eur. J. 2013; 19: 3547
    • 43a Hashmi AS. K. Rudolph M. Weyrauch JP. Wölfle M. Frey W. Bats W. Angew. Chem. Int. Ed. 2005; 44: 2798 ; Angew. Chem. 2005, 117, 2858
    • 43b Hashmi AS. K. Blanco MC. Eur. J. Org. Chem. 2006; 4340
    • 43c Hashmi AS. K. Salathé R. Frey W. Chem. Eur. J. 2006; 12: 6991
    • 43d Hashmi AS. K. Kurpejovic E. Wölfle M. Frey W. Bats JW. Adv. Synth. Catal. 2007; 349: 1743
    • 43e Hashmi AS. K. Rudolph M. Siehl H.-U. Tanaka M. Bats JW. Frey W. Chem. Eur. J. 2008; 14: 3703
    • 43f Hashmi AS. K. Hofmann J. Shi S. Schütz A. Rudolph M. Lothschütz C. Wieteck M. Bührle M. Wölfle M. Rominger F. Chem. Eur. J. 2013; 19: 382
  • 44 Huguet N. Leboeuf D. Echavarren AM. Chem. Eur. J. 2013; 19: 6581
    • 45a Lee-Ruff E. Mladenova G. Chem. Rev. 2003; 103: 1449
    • 45b Namyslo JC. Kaufmann DE. Chem. Rev. 2003; 103: 1485
    • 45c Misale A. Niyomchon S. Maulide N. Acc. Chem. Res. 2016; 49: 2444
    • 46a Masarwa A. Fürstner A. Marek I. Chem. Commun. 2009; 5760
    • 46b Liu R. Zhang M. Wyche TP. Winston-McPherson GN. Bugni TS. Tang W. Angew. Chem. Int. Ed. 2012; 51: 7503
    • 46c Niyomchon S. Audisio D. Luparia M. Maulide N. Org. Lett. 2013; 15: 2318
    • 46d Souris C. Misale A. Chen Y. Luparia M. Maulide N. Org. Lett. 2015; 17: 4486
    • 46e Chen Y.-J. Hu T.-J. Feng C.-G. Lin G.-Q. Chem. Commun. 2015; 51: 8773
    • 46f Eisold M. Didier D. Angew. Chem. Int. Ed. 2015; 54: 15884
    • 46g Guisán-Ceinos M. Parra A. Martín-Heras V. Tortosa M. Angew. Chem. Int. Ed. 2016; 128: 7083
    • 46h Roy SR. Eijsberg H. Bruffaerts J. Marek I. Chem. Sci. 2016; 8: 334
    • 46i Eisold M. Baumann AN. Kiefl GM. Emmerling ST. Didier D. Chem. Eur. J. 2016; 23: 1634
    • 46j Baumann AN. Eisold M. Didier D. Org. Lett. 2017; 19: 2114
    • 47a Collado IG. Hanson JR. Macías-Sánchez AJ. Nat. Prod. Rep. 1998; 15: 187
    • 47b Wessjohann LA. Brandt W. Thiemann T. Chem. Rev. 2003; 103: 1625
    • 47c Dembitsky VM. J. Nat. Med. 2008; 62: 1
    • 47d Xu Y. Conner ML. Brown MK. Angew. Chem. Int. Ed. 2015; 54: 11918
    • 48a Grongsaard P. Bulger PG. Wallace DJ. Tan L. Chen Q. Dolman SJ. Nyrop J. Hoerrner RS. Weisel M. Arredondo J. Itoh T. Xie C. Wen X. Zhao D. Muzzio DJ. Bassan EM. Shultz CS. Org. Process Res. Dev. 2012; 16: 1069
    • 48b Lukin K. Kishore V. Gordon T. Org. Process Res. Dev. 2013; 17: 666
    • 48c Kallemeyn JM. Ku Y.-Y. Mulhern MM. Bishop R. Pal A. Jacob L. Org. Process Res. Dev. 2014; 18: 191
    • 50a Ito H. Hasegawa M. Takenaka Y. Kobayashi T. Iguchi K. J. Am. Chem. Soc. 2004; 126: 4520
    • 50b Takenaka Y. Ito H. Hasegawa M. Iguchi K. Tetrahedron 2006; 62: 3380
    • 50c Takenaka Y. Ito H. Iguchi K. Tetrahedron 2007; 63: 510
    • 51a Shibata T. Takami K. Kawachi A. Org. Lett. 2006; 8: 1343
    • 51b Fan B.-M. Li X.-J. Peng F.-Z. Zhang H.-B. Chan AS. C. Shao Z.-H. Org. Lett. 2010; 12: 304
    • 51c Kossler D. Cramer N. Chem. Sci. 2017; 8: 1862
  • 52 Grande-Carmona F. Iglesias-Sigüenza J. Álvarez E. Díez E. Fernández R. Lassaletta JM. Organometallics 2015; 34: 5073
  • 53 García-Morales C. Ranieri B. Escofet I. López-Suarez L. Obradors C. Konovalov AI. Echavarren AM. J. Am. Chem. Soc. 2017; 139: 13628