Synthesis 2018; 50(22): 4369-4376
DOI: 10.1055/s-0037-1610196
paper
© Georg Thieme Verlag Stuttgart · New York

Heterogeneous Iron-Catalyzed Hydrogenation of Nitroarenes under Water-Gas Shift Reaction Conditions

Pavel Ryabchuk
Leibniz-Institut für Katalyse e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany   Email: matthias.beller@catalysis.de
,
Kathrin Junge
Leibniz-Institut für Katalyse e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany   Email: matthias.beller@catalysis.de
,
Matthias Beller*
Leibniz-Institut für Katalyse e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany   Email: matthias.beller@catalysis.de
› Author Affiliations
This work was supported by the state of Mecklenburg-Vorpommern, the BMBF, and European Research Council (NoNaCat Grant).
Further Information

Publication History

Received: 07 May 2018

Accepted after revision: 30 May 2018

Publication Date:
23 July 2018 (online)


This article is dedicated in honor of Professor Scott Denmark’s 65th birthday.

Published as part of the Special Section dedicated to Scott E. Denmark on the occasion of his 65th birthday

Abstract

Reduction of various nitroarenes in the presence of heterogeneous iron oxide-based catalyst Fe2O3/NGr@C under water-gas shift reaction (WGSR) conditions has been demonstrated. The catalytic material is prepared in a straightforward manner via deposition/pyrolysis of iron-phenanthroline complex on carbon support. It shows high chemoselectivity towards the reduction of nitroarenes in the presence of other reducible and/or poisoning-capable functional groups. Hydrogenation is achieved using CO/H2O as a hydrogen source. Furthermore, it is demonstrated that the presence of triethylamine additive has a significant positive effect on the rate of reduction.

Supporting Information

 
  • References

  • 1 Ott J. Gronemann V. Pontzen F. Fiedler E. Grossmann G. Kersebohm DB. Weiss G. Witte C. Methanol . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2012
  • 2 Tamaru K. In Catalytic Ammonia Synthesis . Jennings JR. Springer; New York: 1991: 1-18
  • 3 Kaneko T. Derbyshire F. Makino E. Gray D. Tamura M. Li K. Coal Liquefaction . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2012
    • 4a Ambrosi A. Denmark SE. Angew. Chem. Int. Ed. 2016; 55: 12164
    • 4b Denmark SE. Nguyen ST. Org. Lett. 2009; 11: 78
    • 4c Denmark SE. Matesich ZD. J. Org. Chem. 2014; 79: 5970
    • 4d Denmark SE. Matesich ZD. Nguyen ST. Sephton SM. J. Org. Chem. 2018; 83: 23
    • 4e Denmark SE. Ibrahim MY. S. Ambrosi A. ACS Catal. 2017; 7: 613
  • 5 Orlandi M. Brenna D. Harms R. Jost S. Benaglia M. Org. Process Res. Dev. 2018; 22: 430
  • 6 Downing RS. Kunkeler PJ. van Bekkum H. Catal. Today 1997; 37: 121
  • 7 Mikami Y. Noujima A. Mitsudome T. Mizugaki T. Jitsukawa K. Kaneda K. Chem. Lett. 2010; 39: 223
    • 8a Liu L. Qiao B. Chen Z. Zhang J. Deng Y. Chem. Commun. 2009; 653
    • 8b Vigano M. Ragaini F. Buonomenna MG. Lariccia R. Caselli A. Gallo E. Cenini S. Jansen JC. Drioli E. ChemCatChem 2010; 2: 1150
    • 8c He L. Wang L.-C. Sun H. Ni J. Cao Y. He H.-Y. Fan K.-N. Angew. Chem. Int. Ed. 2009; 48: 9538

    • For Co-catalyzed nitroarene reduction, see:
    • 8d Zhou P. Jiang L. Wang F. Deng K. Lv K. Zhang Z. Sci. Adv. 2017; 3: e1601945
  • 9 Westerhaus FA. Jagadeesh RV. Wienhöfer G. Pohl M.-M. Radnik J. Surkus A.-E. Rabeah J. Junge K. Junge H. Nielsen M. Brückner A. Beller M. Nat. Chem. 2013; 5: 537
  • 10 Westerhaus FA. Sorribes I. Wienhöfer G. Junge K. Beller M. Synlett 2015; 26: 313
    • 11a Fe2O3/NGr@C: Jagadeesh RV. Surkus A.-E. Junge H. Pohl M.-M. Radnik J. Rabeah J. Huan H. Schünemann V. Brückner A. Beller M. Science 2013; 342: 1073
    • 11b Ni-NiO/ NGr@C: Pisiewicz S. Formenti D. Surkus A.-E. Pohl M.-M. Radnik J. Junge K. Topf C. Bachmann S. Scalone M. Beller M. ChemCatChem 2016; 8: 129
  • 12 Ryabchuk P. Agostini G. Pohl M.-M. Lund H. Agapova A. Junge H. Junge K. Beller M. Sci. Adv. 2018; 4: eaat0761
    • 13a Bang-Andersen B. Ruhland T. Jorgensen M. Smith G. Frederiksen K. Jensen KG. Zhong H. Nielsen SM. Hogg S. Mork A. Stensbol TB. J. Med. Chem. 2011; 54: 3206
    • 13b Gibb A. Deeks ED. Drugs 2014; 74: 135
  • 14 Mao Y. Jiang L. Chen T. He H. Liu G. Wang H. Synthesis 2015; 47: 1387
  • 15 Formenti D. Topf C. Junge K. Ragainia F. Beller M. Catal. Sci. Technol. 2016; 6: 4473
  • 16 Iskra J. Stavber S. Zupan M. Synthesis 2004; 11: 1869
  • 17 Du Z. Zhou W. Bai L. Wang F. Wang J.-X. Synlett 2011; 3: 369
  • 18 García N. García-García P. Fernández-Rodríguez MA. Rubio R. Pedrosa MR. Adv. Synth. Catal. 2012; 354: 321
  • 19 Green RA. Hartwig JF. Angew. Chem. Int. Ed. 2015; 54: 3768
    • 20a Miyashita M. Kohno Y. Kojima E. Saito K. US5242912A, 1993
    • 20b Ryabchuk P. Agostini G. Pohl M.-M. Lund H. Agapova A. Junge H. Junge K. Beller M. Sci. Adv. 2018; 4: eaat0761
  • 21 Erb W. Hellal A. Albini M. Rouden J. Blanchet J. Chemistry - A European Journal 2014; 22: 6608
  • 22 Sharma U. Kumar P. Kumar N. Kumar V. Singh B. Advanced Synthesis and Catalysis 2010; 11-12: 1834