Synthesis 2018; 50(16): 3169-3176
DOI: 10.1055/s-0037-1610139
special topic
© Georg Thieme Verlag Stuttgart · New York

A Metal-Free Synthesis of 3-Phenoxyimidazo Heterocycles by Catalytic Oxidative Cyclization of 2-Amino-azaarenes with Lignin Models

Yizhou Chen †
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
,
Shanlu Wang †
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
,
Li Zhao*
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
b   Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
,
Chenyan Rong
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
,
Tong Liu
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
,
Han Sun
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
,
Yuping Wang
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
,
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
,
Guofu Zhong*
a   College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China   Email: lizhao@hznu.edu.cn   Email: zhangjian@hznu.edu.cn   Email: zgf@hznu.edu.cn
› Author Affiliations
We gratefully acknowledge the National Natural Science Foundation of China (NSFC) (21502037, 21373073, and 21672048) and the Pandeng Plan Foundation of Hangzhou Normal University for Youth Scholars of Materials, Chemistry and Chemical Engineering for financial support. G. Z. acknowledges a Qianjiang Scholar award from Zhejiang Province, China.
Further Information

Publication History

Received: 28 February 2018

Accepted after revision: 09 April 2018

Publication Date:
23 May 2018 (online)


Y. C. and S. W. contributed equally to this work

Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis

Abstract

A metal-free catalytic oxidative cyclization of 2-aminopyridines and 2-aminobenzothiazole with lignin model 2-phenoxyacetophenones was developed, in which inexpensive iodine was used as the catalyst and tert-butyl hydroperoxide (TBHP) was the oxidant. The reaction proceeded smoothly under an air atmosphere to produce valuable 3-phenoxyimidazo[1,2-a]pyridines and 3-phenoxybenzo[d]imidazo[2,1-b]thiazoles, respectively, in moderate to good yields.

Supporting Information

 
  • References

    • 1a Boerjan W. Ralph J. Baucher M. Annu. Rev. Plant Biol. 2003; 54: 519
    • 1b Fan H.-L. Yang Y.-Y. Song J.-L. Ding G.-D. Wu C.-Y. Yang G.-Y. Han B.-X. Green Chem. 2014; 16: 600
    • 1c Corma A. Iborra S. Velty A. Chem. Rev. 2007; 107: 2411
    • 2a Stein TV. Hartog TD. Klankermayer J. Angew. Chem. Int. Ed. 2015; 54: 5859
    • 2b Hanson SK. Wu R. Silks LA. Angew. Chem. Int. Ed. 2012; 51: 3410
    • 2c Nguyen JD. Matsuura BS. Stephenson CR. J. J. Am. Chem. Soc. 2014; 136: 1218
    • 3a Rahimi A. Ulbrich A. Coon JJ. Stahl SS. Nature 2014; 515: 249
    • 3b Lancefield CS. Ojo OS. Tran F. Westwood NJ. Angew. Chem. Int. Ed. 2015; 54: 258
    • 3c Nichols JM. Bishop LM. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2010; 132: 12554
    • 3d Zhang J. Liu Y. Chiba S. Loh T.-P. Chem. Commun. 2013; 49: 11439
    • 3e Liu X. Xu H. Ma Z. Zhang H. Wu C. Liu Z. RSC Adv. 2016; 6: 27126
    • 4a Enguehard-Gueiffier C. Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888
    • 4b Song G. Zhang Y. Li X. Organometallics 2008; 27: 1936
    • 4c John A. Shaikh MM. Ghosh P. Dalton Trans. 2009; 10581
    • 4d Wan J. Zheng C.-J. Fung M.-K. Liu X.-K. Lee C.-S. Zhang X.-H. J. Mater. Chem. 2012; 22: 4502

      For selected examples of biologically active imidazo[1,2-a]pyridyl derivatives, see:
    • 5a Okubo T. Yoshikawa R. Chaki S. Okuyamac S. Nakazato A. Bioorg. Med. Chem. 2004; 12: 423
    • 5b Jain AN. J. Med. Chem. 2004; 47: 947
    • 5c Harrison TS. Keating GM. CNS Drugs 2005; 19: 65
    • 5d Hsua N. Jha SK. Coleman T. Frank MG. Behav. Brain Res. 2009; 201: 233
    • 5e Wiegand MH. Drugs 2008; 68: 2411
    • 5f Hanson SM. Morlock EV. Satyshur KA. Czajkowski C. J. Med. Chem. 2008; 51: 7243
    • 6a Chernyak N. Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2743
    • 6b Wang H. Wang Y. Peng C. Zhang J. Zhu Q. J. Am. Chem. Soc. 2010; 132: 13217
    • 6c Bagdi AK. Rahman M. Santra S. Majee A. Hajra A. Adv. Synth. Catal. 2013; 355: 1741
    • 6d Mohan DC. Donthiri RR. Rao SN. Adimurthy S. Adv. Synth. Catal. 2013; 355: 2217
    • 6e Pericherla K. Kaswan P. Khedar P. Khungar B. Parang K. Kumar A. RSC Adv. 2013; 3: 18923
    • 6f Cai Z.-J. Wang S.-Y. Ji S.-J. Adv. Synth. Catal. 2013; 355: 2686
    • 6g Zhang Y. Chen Z. Wu W. Zhang Y. Su W. J. Org. Chem. 2013; 78: 12494
    • 6h Meng X. Wang Y. Yu C. Zhao P. RSC Adv. 2014; 4: 27301
    • 6i Santra S. Bagdi AK. Majee A. Hajra A. Adv. Synth. Catal. 2013; 355: 1065
    • 6j Santra S. Mitra S. Bagdi AK. Majee A. Hajra A. Tetrahedron Lett. 2014; 55: 5151
    • 6k Yan R.-L. Yan H. Ma C. Ren Z.-Y. Gao X.-A. Huang G.-S. Liang Y.-M. J. Org. Chem. 2012; 77: 2024
    • 6l Samanta S. Jana S. Mondal S. Monir K. Chandra SK. Hajra A. Org. Biomol. Chem. 2016; 14: 5073
    • 6m Adiyala PR. Mani GS. Nanubolu JB. Shekar KC. Maurya RA. Org. Lett. 2015; 17: 4308
    • 6n Hajos G. Riedl Z. In Science of Synthesis . Vol. 12. Neier R. Georg Thieme Verlag; Stuttgart: 2002: 613-678
    • 6o Liu S. Xi H. Zhang J. Wu X. Gao Q. Wu A. Org. Biomol. Chem. 2015; 13: 8807
    • 6p Yan H. Yan R. Yang S. Gao X. Wang Y. Huang G. Liang Y. Chem. Asian. J. 2012; 7: 2028
    • 7a Andreani A. Granaiola M. Locatelli A. Morigi R. J. Med. Chem. 2012; 55: 2078
    • 7b Andreani A. Burnelli S. Granaiola M. Leoni A. J. Med. Chem. 2008; 51: 809
    • 7c Al-Tel TH. Al-Qawasmeh RA. Zaarour R. Eur. J. Med. Chem. 2011; 46: 1874
    • 7d Andreani A. Granaiola M. Leoni A. Locatelli A. Morigi R. Eur. J. Med. Chem. 2011; 46: 4311
    • 7e Christodoulou MS. Colombo F. Passarella D. Ieronimo G. Bioorg. Med. Chem. 2011; 19: 1649
    • 8a Kumbhar VV. Hangirgekar SP. Wadwale NB. Pharma Chem. 2013; 5: 274
    • 8b Kumbhare RM. Kumar KV. Ramaiah MJ. Dadmal T. Pushpavalli SN. C. V. L. Mukhopadhyay D. Divya B. Dev TA. Kosurkar U. Pal-Bhadra M. Eur. J. Med. Chem. 2011; 46: 4258
    • 8c Christodoulou MS. Colombo F. Passarella D. Ieronimo G. Zuco V. De Cesare M. Zunino F. Bioorg. Med. Chem. 2011; 19: 1649
    • 8d Bakherad M. Nasr-Isfahani H. Keivanloo A. Sang G. Tetrahedron Lett. 2008; 49: 6188
    • 8e Mishra S. Monir K. Hajra A. Org. Lett. 2014; 16: 6084
    • 8f Balwe SG. Jeong YT. RSC Adv. 2016; 6: 107225
    • 9a Cao H. Zhan H. Lin Y. Lin X. Du Z. Jiang H. Org. Lett. 2012; 14: 1688
    • 9b Choy PY. Luk KC. Wu Y. So CM. Wang L.-L. Kwong FY. J. Org. Chem. 2015; 80: 1457
    • 9c Marhadour S. Bazin MA. Marchand P. Tetrahedron Lett. 2012; 53: 297
    • 9d Ravi C. Mohan DC. Adimurthy S. Org. Lett. 2014; 16: 2978
    • 9e Patil SM. Kulkarni S. Mascarenhas M. Sharma R. Roopan SM. Roychowdhury A. Tetrahedron 2013; 69: 8255
    • 9f Koubachi J. Berteina-Raboin S. Mouaddib A. Guillaumet G. Synthesis 2009; 271
    • 9g Lei S. Mai Y. Yan C. Mao J. Cao H. Org. Lett. 2016; 18: 3582
    • 9h Wang C. Lei S. Cao H. Qiu S. Liu J. Deng H. Yan C. J. Org. Chem. 2015; 80: 12725
    • 9i Cao H. Lei S. Li N. Chen L. Liu J. Cai H. Qiu S. Tan J. Chem. Commun. 2015; 51: 1823
    • 9j Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 9k Jana S. Chakraborty A. Mondal S. Hajra A. RSC Adv. 2015; 5: 77534
    • 9l Kundu D. Ahammed S. Ranu BC. Org. Lett. 2014; 16: 1814
    • 9m Wang Q. Qi Z. Xie F. Li X. Adv. Synth. Catal. 2015; 357: 355
    • 9n Jana S. Chakraborty A. Mondal S. Hajra A. RSC Adv. 2015; 5: 77534
    • 9o Gao Y. Lu W. Liu P. Sun P. J. Org. Chem. 2016; 81: 2482
    • 9p Bagdi AK. Hajra A. Chem. Rec. 2016; 16: 1868
    • 10a Alcaide B. Pérez-Ossorio R. Plumet J. Sierra MA. Tetrahedron Lett. 1986; 27: 1627
    • 10b Alcaide B. Plumet J. Sierra MA. Vicent C. J. Org. Chem. 1989; 54: 5763
    • 10c Lu Y. Hendra R. Oakley AJ. Keller PA. Tetrahedron Lett. 2014; 55: 6212
    • 10d Wang Y. Saha B. Li F. Frett B. Li H. Tetrahedron Lett. 2014; 55: 1281
    • 10e Deady LW. Stanborough MS. Aust. J. Chem. 1981; 34: 1295
    • 10f Deady LW. Stanborough MS. J. Heterocycl. Chem. 1979; 16: 187
    • 10g Kaminski JJ. Hilbert JM. Pramanik BN. Solomon DM. Conn DJ. Rizvi RK. Elliott AJ. Guzik H. Lovey RG. J. Med. Chem. 1987; 30: 2031
  • 11 Zhang J. Lu X. Li T. Wang S. Zhong G. J. Org. Chem. 2017; 82: 5222
    • 12a Sun C.-L. Li H. Yu D.-G. Yu M. Zhou X. Lu X.-Y. Huang K. Zheng S.-F. Li B.-J. Shi Z.-J. Nat. Chem. 2010; 2: 1044
    • 12b Shirakawa E. Itoh K. Higashino T. Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
    • 12c Liu W. Cao H. Zhang H. Zhang H. Chung KH. He C. Wang H. Kwong FY. Lei A. J. Am. Chem. Soc. 2010; 132: 16737
    • 13a Li F. Yu C. Zhang J. Zhong G. Org. Lett. 2016; 18: 4582
    • 13b Yu C. Li F. Zhang J. Zhong G. Chem. Commun. 2017; 53: 533
    • 13c Li F. Shen C. Zhang J. Wu L. Zhuo X. Ding L. Zhong G. Adv. Synth. Catal. 2016; 358: 3932
    • 13d Li F. Yu C. Zhang J. Zhong G. Org. Biomol. Chem. 2017; 15: 1236
    • 13e Yu C. Zhang J. Zhong G. Chem. Commun. 2017; 53: 9902
    • 13f Li T. Zhang J. Yu C. Lu X. Xu L. Zhong G. Chem. Commun. 2017; 53: 12926
    • 13g Meng K. Zhang J. Li F. Lin Z. Zhang K. Zhong G. Org. Lett. 2017; 19: 2498
    • 14a Jiang H. Huang H. Cao H. Qi C. Org. Lett. 2010; 12: 5561
    • 14b Wan C. Gao L. Wang Q. Zhang J. Wang Z. Org. Lett. 2010; 12: 3902
    • 14c Zhang J. Zhu D. Yu C. Wan C. Wang Z. Org. Lett. 2010; 12: 2841
    • 14d Wang Q. Wan C. Gu Y. Zhang J. Gao L. Wang Z. Green Chem. 2011; 13: 578
    • 14e Yan Y. Wang Z. Chem. Commun. 2011; 47: 9513
    • 14f Zhang J. Wang Z. Wang Y. Wan C. Zheng X. Wang Z. Green Chem. 2009; 11: 1973
    • 14g Ma L. Wang X. Yu W. Han B. Chem. Commun. 2011; 47: 11333
    • 14h Lamani M. Prabhu KR. J. Org. Chem. 2011; 76: 7938