Synlett 2018; 29(14): 1881-1886
DOI: 10.1055/s-0037-1609911
letter
© Georg Thieme Verlag Stuttgart · New York

Photoredox-Catalyzed Decarboxylative C–H Acylation of Heteroarenes

Wei Jia
State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518005, P. R. of China   Email: xyyang@hit.edu.cn   Email: xiawj@hit.edu.cn
,
Yong Jian
State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518005, P. R. of China   Email: xyyang@hit.edu.cn   Email: xiawj@hit.edu.cn
,
Binbin Huang
State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518005, P. R. of China   Email: xyyang@hit.edu.cn   Email: xiawj@hit.edu.cn
,
Chao Yang*
State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518005, P. R. of China   Email: xyyang@hit.edu.cn   Email: xiawj@hit.edu.cn
,
State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518005, P. R. of China   Email: xyyang@hit.edu.cn   Email: xiawj@hit.edu.cn
› Author Affiliations
We are grateful for the financial supports from China NSFC (Nos. 21372055, 21472030 and 21672047), SKLUWRE (No. 2018DX02)
Further Information

Publication History

Received: 15 June 2018

Accepted after revision: 24 June 2018

Publication Date:
23 July 2018 (online)


Abstract

A mild, environmentally friendly, and regioselective acylation of heterocycles with inexpensive carboxylic acids is reported via photoredox catalysis. The strategy is highlighted with good functional group tolerance and substrate scope which could rapidly realize the acylation of various heterocyclic compounds.

Supporting Information

 
  • References and Notes

    • 1a Baumann KL. Butler DE. Deering CF. Mennen KE. Millar A. Nanninga TN. Palmer CW. Roth BD. Tetrahedron Lett. 1992; 33: 2283
    • 1b Fráter G. Bajgrowicz JA. Kraft P. Tetrahedron 1998; 54: 7633
    • 1c Magnus P. Sane N. Fauber BP. Lynch V. J. Am. Chem. Soc. 2009; 131: 16045
    • 1d McNamara JM. Leazer JL. Bhupathy M. Amato JS. Reamer RA. Reider PJ. Grabowski EJ. J. J. Org. Chem. 1989; 54: 3718
    • 1e Murakami K. Yamada S. Kaneda T. Itami K. Chem. Rev. 2017; 117: 9302
    • 1f Schwarz J. Konig B. Green Chem. 2018; 20: 323
    • 1g Woodward RB. Cava MP. Ollis WD. Hunger A. Daeniker HU. Schenker K. J. Am. Chem. Soc. 1954; 76: 4749
    • 2a Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
    • 2b Cheng C. Hartwig JF. Chem. Rev. 2015; 115: 8946
    • 2c Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 3a Antonchick AP. Burgmann L. Angew. Chem. Int. Ed. 2013; 52: 3267
    • 3b Minisci F. Vismara E. Fontana F. J. Org. Chem. 1989; 54: 5224
    • 3c Molander GA. Colombel V. Braz VA. Org. Lett. 2011; 13: 1852
    • 4a Falbe J. Regitz M. Römpp Chemie Lexikon. Thieme; Stuttgart: 1995
    • 4b Pattenden G. Crawford LP. Richardson SK. Aldehydes and Ketones, In General and Synthetic Methods 1994; Vol. 16: 37
    • 4c Taddei M. Mann A. Hydroformylation for Organic Synthesis. Vol. 342. Springer; Berlin, Heidelberg: 2013
    • 5a Crounse NN. The Gattermann–Koch Reaction. In Organic Reactions. Vol. 5. John Wiley and Sons; 1949: 290
    • 5b Duff JC. Bills EJ. J. Chem. Soc. 1932; 1987
    • 5c Jones G. Stanforth SP. The Vilsmeier Reaction of Non-Aromatic Compounds. In Organic Reactions. Vol. 56. John Wiley and Sons; 2000: 355
    • 5d Wynberg H. Chem. Rev. 1960; 60: 169
  • 6 Bouveault L. Bull. Soc. Chim. Fr. 1904; 31: 1306
    • 7a Baillargeon VP. Stille JK. J. Am. Chem. Soc. 1986; 108: 452
    • 7b Brennführer A. Neumann H. Beller M. Synlett 2007; 2537
    • 7c Klaus S. Neumann H. Zapf A. Strübing D. Hübner S. Almena J. Riermeier T. Groß P. Sarich M. Krahnert W.-R. Rossen K. Beller M. Angew. Chem. Int. Ed. 2006; 45: 154
    • 7d Korsager S. Taaning RH. Skrydstrup T. J. Am. Chem. Soc. 2013; 135: 2891
    • 7e Natte K. Dumrath A. Neumann H. Beller M. Angew. Chem. Int. Ed. 2014; 53: 10090
    • 7f Natte K. Dumrath A. Neumann H. Beller M. Angew. Chem. 2014; 126: 10254
    • 7g Pri-Bar I. Buchman O. J. Org. Chem. 1984; 49: 4009
    • 7h Ueda T. Konishi H. Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
    • 7i Yu B. Zhao Y. Zhang H. Xu J. Hao L. Gao X. Liu Z. Chem. Commun. 2014; 50: 2330
  • 8 Schoenberg A. Bartoletti I. Heck RF. J. Org. Chem. 1974; 39: 3318
    • 9a Duncton MA. J. MedChemComm 2011; 2: 1135
    • 9b Fontana F. Minisci F. Nogueira Barbosa MC. Vismara E. J. Org. Chem. 1991; 56: 2866
    • 9c Minisci F. Synthesis 1973; 1
    • 9d Minisci F. Fontana F. Vismara E. J. Heterocycl. Chem. 1990; 27: 79
    • 9e Tauber J. Imbri D. Opatz T. Molecules 2014; 19: 16190
    • 10a Kärkäs MD. Porco JA. Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 10b Ravelli D. Protti S. Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 10c Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 10d Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
    • 10e Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
    • 10f Ghosh I. Marzo L. Das A. Shaikh R. König B. Acc. Chem. Res. 2016; 49: 1566
    • 10g Tellis JC. Kelly CB. Primer DN. Jouffroy M. Patel NR. Molander GA. Acc. of Chem. Res. 2016; 49: 1429
    • 11a Candish L. Standley EA. Gómez-Suárez A. Mukherjee S. Glorius F. Chem. Eur. J. 2016; 22: 9971
    • 11b Cassani C. Bergonzini G. Wallentin C.-J. Org. Lett. 2014; 16: 4228
    • 11c Chu L. Ohta C. Zuo Z. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 11d Gao F. Wang J.-T. Liu L.-L. Ma N. Yang C. Gao Y. Xia W. Chem. Commun. 2017; 53: 8533
    • 11e Garza-Sanchez RA. Tlahuext-Aca A. Tavakoli G. Glorius F. ACS Catal. 2017; 7: 4057
    • 11f Griffin JD. Zeller MA. Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
    • 11g Johnston CP. Smith RT. Allmendinger S. MacMillan DW. C. Nature 2016; 536: 322
    • 11h Liu J. Liu Q. Yi H. Qin C. Bai R. Qi X. Lan Y. Lei A. Angew. Chem. Int. Ed. 2014; 53: 502
    • 11i Noble A. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 11j Noble A. McCarver SJ. MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
    • 11k Rueda-Becerril M. Mahé O. Drouin M. Majewski MB. West JG. Wolf MO. Sammis GM. Paquin J.-F. J. Am. Chem. Soc. 2014; 136: 2637
    • 11l Ventre S. Petronijevic FR. MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 5654
    • 11m Xuan J. Zhang Z.-G. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 11n Zhou Q.-Q. Guo W. Ding W. Wu X. Chen X. Lu L.-Q. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
    • 11o Zuo Z. Ahneman DT. Chu L. Terrett JA. Doyle AG. MacMillan DW. C. Science 2014; 345: 437
    • 11p Zuo Z. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
    • 11q Sherwood TC. Li N. Yazdani AN. Dhar TG. M. J. Org. Chem. 2018; 83: 3000
  • 12 Huang H. Li X. Yu C. Zhang Y. Mariano PS. Wang W. Angew. Chem. Int. Ed. 2017; 56: 1500
  • 13 Nielsen MK. Shields BJ. Liu J. Williams MJ. Zacuto MJ. Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 7191
  • 14 Ji W. Li P. Yang S. Wang L. Chem. Commun. 2017; 53: 8482
  • 15 Li X. Gu X. Li Y. Li P. ACS Catal. 2014; 4: 1897
    • 16a Cheng W.-M. Shang R. Fu M.-C. Fu Y. Chem. Eur. J. 2017; 23: 2537
    • 16b Cheng W.-M. Shang R. Fu Y. ACS Catal. 2017; 7: 907
    • 16c DiRocco DA. Dykstra K. Krska S. Vachal P. Conway DV. Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
    • 16d Huff CA. Cohen RD. Dykstra KD. Streckfuss E. DiRocco DA. Krska SW. J. Org. Chem. 2016; 81: 6980
    • 16e Jin J. MacMillan DW. C. Nature 2015; 525: 87
    • 16f Kammer LM. Rahman A. Opatz T. Molecules 2018; 23: 764
    • 16g Sherwood TC. Li N. Yazdani AN. Dhar TG. M. J. Org. Chem. 2018; 83: 3000
  • 17 Gutiérrez-Bonet Á. Remeur C. Matsui JK. Molander GA. J. Am. Chem. Soc. 2017; 139: 12251
  • 18 Procedure A for Compounds 3a–pHeterocycle (0.10 mmol), ammonium persulfate (0.30 mmol) and Cs2CO3 (0.20 mmol) were placed in a dry glass tube. Anhydrous DMSO (1 mL) and 2,2-diethoxyacetic acid (0.7 mmol) were injected into the tube by syringe under N2 atmosphere. The solution was then stirred at room temperature under the irradiation of 15 W blue LEDs strip for 24 h. After completion of the reaction, the mixture was quenched by addition of 1.2 mL of 3.0 M HCl and stirred for another 20 h. Then saturated Na2CO3 solution was added to adjust pH to basic. The system was extracted with CH2Cl2, the combined organic layers were washed with brine, then dried over anhydrous Na2SO4. The desired products were obtained in the corresponding yields after purification by flash chromatography on silica gel eluting with PE and EtOAc.Isoquinoline-1-carbaldehyde (3a)Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 10.38 (s, 1 H), 9.38–9.22 (m, 1 H), 8.74 (d, J = 5.5 Hz, 1 H), 7.97–7.82 (m, 2 H), 7.83–7.68 (m, 2 H). 13C NMR (151 MHz, CDCl3): δ = 195.79, 195.74, 149.88, 142.54, 136.97, 130.88, 130.15, 127.05, 126.41, 125.80, 125.63. GC-MS (EI): 157.1, 129.1, 102.1, 75.0, 63.1, 51.1, 29.1.Procedure B for Compounds 5a–z,bbHeterocycle (0.10 mmol), ammonium persulfate (0.20 mmol), [Ir{dF(CF3ppy)}2(dtbbpy)]PF6 (0.2 mol%), α-keto acids (1.0 mmol) were placed in a dry glass tube. Anhydrous DMSO (1 mL) was injected into the tube by a syringe under a N2 atmosphere. The solution was then stirred at room temperature under the irradiation of 15 W blue LEDs strip for 12 h. After completion of the reaction, saturated Na2CO3 solution was added to adjust pH to basic. The combined organic layer was washed with brine and then dried over anhydrous Na2SO4. The desired products were obtained in the corresponding yields after purification by flash chromatography on silica gel eluting with PE and EtOAc.(4-Methylquinolin-2-yl)(phenyl)methanone (5b)Brownish solid. 1H NMR (400 MHz, CDCl3): δ = 8.22 (dd, J = 14.0, 7.9 Hz, 3 H), 8.07 (d, J = 8.3 Hz, 1 H), 7.94 (s, 1 H), 7.77 (t, J = 7.6 Hz, 1 H), 7.72–7.65 (m, 1 H), 7.62 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 2.80 (s, 3 H).13C NMR (151 MHz, CDCl3): δ = 194.33, 154.52, 146.72, 145.78, 136.32, 133.18, 131.59, 131.27, 129.86, 129.08, 128.30, 128.27, 123.90, 121.43,19.08. GC-MS (EI): 247.1, 232.1, 218.1, 204.1, 140.0, 105.0, 77.1, 51.1, 28.1.