Synlett 2018; 29(18): 2404-2407
DOI: 10.1055/s-0037-1609629
letter
© Georg Thieme Verlag Stuttgart · New York

Revisiting Sodium Hypochlorite Pentahydrate (NaOCl·5H2O) for the Oxidation of Alcohols in Acetonitrile without Nitroxyl Radicals

Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan   Email: hirasita@nitech.ac.jp
,
Yuto Sugihara
,
Shota Ishikawa
,
Yohei Naito
,
Yuta Matsukawa
,
Shuki Araki
› Author Affiliations
Further Information

Publication History

Received: 04 July 2018

Accepted after revision: 26 September 2018

Publication Date:
17 October 2018 (online)


Abstract

Sodium hypochlorite pentahydrate (NaOCl·5H2O) is capable of oxidizing alcohols in acetonitrile at 20 °C without the use of catalysts. The oxidation is selective to allylic, benzylic, and secondary alcohols. ­Aliphatic primary alcohols are not oxidized.

Supporting Information

 
  • References and Notes

    • 1a Fernandez MI. Tojo G. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Springer; New York: 2006
    • 1b Stahl SS. Alsters PL. Liquid Phase Aerobic Oxidation Catalysis . Wiley-VCH; Weinheim, Germany: 2016
    • 2a Anelli PL. Biffi C. Montanari F. Quici S. J. Org. Chem. 1987; 52: 2559
    • 2b Sheldon RA. Arends IW. C. E. Adv. Synth. Catal. 2004; 346: 1051
    • 2c Shibuya M. Tomizawa M. Suzuki I. Iwabichi Y. J. Am. Chem. Soc. 2006; 128: 8412
    • 2d Janssen MH. A. Chesa Castellana JF. Jackman H. Dunn PJ. Sheldon RA. Green Chem. 2011; 13: 905
    • 3a Okada T. Asawa T. Sugiyama Y. Kirihara M. Iwai T. Kimura Y. Synlett 2014; 25: 596
    • 3b Okada T. Matsumuro H. Iwai T. Kitagawa S. Yamazaki K. Akiyama T. Asawa T. Sugiyama Y. Kimura Y. Kirihara M. Chem. Lett. 2015; 44: 185
    • 3c Okada T. Asawa T. Sugiyama Y. Iwai T. Kirihara M. Kimura Y. Tetrahedron 2016; 72: 2818
    • 3d Kirihara M. Okada T. Sugiyama Y. Akiyoshi M. Matsunaga T. Kimura Y. Org. Process Res. Dev. 2017; 21: 1925
  • 4 Hirashita T. Nakanishi M. Uchida T. Yamamoto M. Araki S. Arends IW. C. E. Sheldon RA. ChemCatChem 2016; 8: 2704
    • 5a Stevens RV. Chapman KT. Weller HN. J. Org. Chem. 1980; 45: 2030
    • 5b Stevens RV. Chapman KT. Stubbs CA. Tam WW. Albizati KF. Tetrahedron Lett. 1982; 23: 4647
  • 6 Fukuda N. Kajiwara T. Katou T. Majima K. Ikemoto T. Synlett 2013; 24: 1438
  • 7 Oxidation of 2-Octanol; Typical Procedure (entry 10, Table 2): To a suspension of NaOCl·5H2O crystals (123 mg, 0.75 mmol) in acetonitrile (5.0 mL), was added 2-octanol (65 mg, 0.50 mmol), and the resulting mixture was stirred at 20 °C. Aliquots were analyzed at intervals by GC after passing through a short SiO2 column (eluting with EtOAc/hexane, 9:1). The reaction was stopped after 1 h by quenching with Na2SO3 (94 mg, 0.75 mmol) and the mixture was diluted with CH2Cl2 (10 mL). The yield of 2-octanone (tR : 2.1 min) and the recovery of 2-octanol (tR : 2.8 min) were determined to be 91% and 2%, respectively, by GC analysis based on a calibration curve using authentic samples.
  • 8 Oxidation of 1,5-hexanediol (Scheme 3): To a suspension of NaOCl·5H2O crystals (123 mg, 0.75 mmol) in acetonitrile (5.0 mL), was added 1,5-hexanediol (59 mg, 0.50 mmol), and the resulting mixture was stirred at 20 °C. The reaction was stopped after 1 h by quenching with Na2SO3 (95 mg, 0.75 mmol). The product was analyzed by 1H NMR and found to be 6-hydroxyhexane-2-one (31%, δ = 2.49 ppm, 2 H) and 1,5-hexanediol (49% recovery, δ = 1.20 ppm, 3 H) based on a standard material (triphenylmethane δ = 5.55 ppm, 1 H).