Synthesis 2018; 50(19): 3911-3920
DOI: 10.1055/s-0037-1609578
paper
© Georg Thieme Verlag Stuttgart · New York

An Effective Heterogeneous Copper Catalyst System for C–N Coupling and Its Application in the Preparation of 2-Methyl-4-methoxydiphenylamine (MMDPA)

Zhou Yi
a   School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou 510275, P. R. of China   Email: huangmn25@mail.sysu.edu.cn
,
a   School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou 510275, P. R. of China   Email: huangmn25@mail.sysu.edu.cn
,
Yiqian Wan
a   School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou 510275, P. R. of China   Email: huangmn25@mail.sysu.edu.cn
,
Xinhai Zhu
b   Instrument Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. of China
› Author Affiliations
This work was supported by grants from the National Natural Science Foundation of China (21702239), Guangzhou Science and Technology Plan Projects (201707010271), the Fundamental Research Funds for the Central Universities (16lgpy16), and the Funds of Sun Yat-sen University (2017sdjgpy010).
Further Information

Publication History

Received: 07 May 2018

Accepted after revision: 13 June 2018

Publication Date:
25 July 2018 (online)


Abstract

A ligand-recyclable, environmentally benign heterogeneous catalyst system composed of CuI and polystyrene-supported N(-(4-(aminomethyl)naphthalen-1-yl)-N(-phenyl-1H-pyrrole-2-carbohydrazide (PSAP) has been established for Ullmann type C–N coupling based on the homogeneous catalyst system N′,N′-diphenyl-1H-pyrrole-2-carbohydrazide/CuI. This heterogeneous catalyst system maintained the catalytic effectiveness of the homogeneous catalyst. A variety of functionalized aryl bromides can be efficiently aminated with aryl amines and aliphatic amines with high selectivity for amines over alcohols. Moreover, a practical application of this catalyst system to promote the reaction of commercially available 4-methoxy-2-methylaniline and bromobenzene in 10 mmol scale, provided 2-methyl-4-methoxydiphenylamine (MMDPA) with 93% yield with the merit of the approach being simple operation for work-up and purification.

Supporting Information

 
  • References

    • 1a Travis AS. Manufacture and Uses of the Anilines: A Vast Array of Processes and Products. In The Chemistry of Anilines. John Wiley & Sons Ltd; Chichester: 2007
    • 1b Magano J. Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 1c Aubin Y. Fischmeister C. Thomas CM. Renaud JL. Chem. Soc. Rev. 2010; 39: 4130
    • 2a Goodbrand HB. Hu N.-X. J. Org. Chem. 1999; 64: 670
    • 2b Klapars A. Antilla JC. Huang X. Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
    • 2c Ma D. Zhang Y. Yao J. Wu S. Tao F. J. Am. Chem. Soc. 1998; 120: 12459
    • 2d Kwong FY. Buchwald SL. Org. Lett. 2003; 5: 793
    • 3a Jiang Y. Ma D. Assembly of N-Containing Heterocycles via Pd- and Cu-Catalyzed C–N Bond Formation Reaction. In Amination and Formation of sp2 C–N Bonds. Springer-Verlag; Berlin/Heidelberg: 2013
    • 3b Monnier F. Taillefer M. Copper-Catalyzed C(aryl)–N Bond Formation. In Amination and Formation of sp2 C–N Bonds. Springer-Verlag; Berlin/Heidelberg: 2013
    • 3c Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 4a Ma D. Geng Q. Zhang H. Jiang Y. Angew. Chem. Int. Ed. 2010; 49: 1291
    • 4b Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 4c Klapars A. Antilla JC. Huang X. Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
    • 4d Evano G. Blanchard N. Toumi M. Chem. Rev. 2008; 108: 3054
    • 4e Schranck J. Tlili A. ACS Catal. 2018; 8: 405
    • 5a Zhou W. Fan M. Yin J. Jiang Y. Ma D. J. Am. Chem. Soc. 2015; 137: 11942
    • 5b Huang M. Lin X. Zhu X. Peng W. Xie J. Wan Y. Eur. J. Org. Chem. 2011; 4523
    • 5c Fan M. Zhou W. Jiang Y. Ma D. Org. Lett. 2015; 17: 5934
  • 6 Xie R. Fu H. Ling Y. Chem. Commun. 2011; 8976
  • 7 Shafir A. Lichtor PA. Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3490
  • 8 Zeng M. Zhang X. Shao L. Qi C. Zhang X.-M. J. Organomet. Chem. 2012; 704: 29
  • 9 Munnik P. de Jongh PE. de Jong KP. Chem. Rev. 2015; 115: 6687
    • 10a Hajipour AR. Check M. Khorsandi Z. Appl. Organomet. Chem. 2017; 31: e3769
    • 10b Nasrollahzadeh M. Zahraei A. Pourbasheer E. Monatsh. Chem. 2015; 146: 1329
    • 10c Kodicherla B. Perumgani CP. Mandapati MR. Appl. Catal., A 2014; 483: 110
    • 10d Hirai Y. Uozumi Y. Chem. Lett. 2011; 40: 934
    • 11a Islam SM. Mondal S. Mondal P. Roy AS. Tuhina K. Salam N. Mobarak M. J. Organomet. Chem. 2012; 696: 4264
    • 11b Islam SM. Mondal S. Mondal P. Roy AS. Tuhina K. Mobarok M. Inorg. Chem. Commun. 2011; 14: 1352
    • 11c Kantam ML. Roy M. Roy S. Sreedhar B. Lal De R. Catal. Commun. 2008; 9: 2226
    • 12a Yi W. Cao R. Wen H. Yan Q. Zhou B. Wan Y. Ma L. Song H. Bioorg. Med. Chem. Lett. 2008; 18: 6490
    • 12b Lv X. Wang Z. Bao W. Tetrahedron 2006; 62: 4756
  • 13 Colacino E. Villebrun L. Martinez J. Lamaty F. Tetrahedron 2010; 66: 3730
    • 14a Harsha K. Reddy V. Satish G. Ramesh K. Karnakar K. Nageswar YV. D. Tetrahedron Lett. 2012; 53: 3061
    • 14b Ganesh Babu S. Karvembu R. Ind. Eng. Chem. Res. 2011; 50: 9594
    • 14c Rout L. Jammi S. Punniyamurthy T. Org. Lett. 2007; 9: 3397
  • 15 Chouhan G. Wang D. Alper H. Chem. Commun. 2007; 4809
  • 16 Huang L. Yu R. Zhu X. Wan Y. Tetrahedron 2013; 69: 8974
  • 17 Kim B.-S. Jung D.-G. Kim K. Lee T.-J. Kim J.-C. Kim D.-H. Korean J. Chem. Eng. 1998; 15: 522
  • 18 Scholz U. Schlummer B. Tetrahedron 2005; 61: 6379
  • 19 Ding X. Huang M. Yi Z. Du D. Zhu X. Wan Y. J. Org. Chem. 2017; 82: 5416
  • 20 Wan Y. Fu L. Lin X. Zhu X. Wang S. Liang Y. Chinese Patent CN102276612A, 2011
  • 21 Yang B. Mao Z. Zhu X. Wan Y. Catal. Commun. 2015; 60: 92
  • 22 Vantourout JC. Miras HN. Isidro-Llobet A. Sproules S. Watson AJ. B. J. Am. Chem. Soc. 2017; 139: 4769
  • 23 Lan X.-B. Li Y. Li Y.-F. Shen D.-S. Ke Z. Liu F.-S. J. Org. Chem. 2017; 82: 2914
  • 24 Hatakeyama T. Imayoshi R. Yoshimoto Y. Ghorai SK. Jin M. Takaya H. Norisuye K. Sohrin Y. Nakamura M. J. Am. Chem. Soc. 2012; 134: 20262
  • 25 Mostafalu R. Kaboudin B. Kazemi F. Yokomatsu T. RSC Adv. 2014; 4: 49273
  • 26 Yonekura K. Yoshimura Y. Akehi M. Tsuchimoto T. Adv. Synth. Catal. 2018; 360: 1159
  • 27 Marcoux J.-F. Wagaw S. Buchwald SL. J. Org. Chem. 1997; 62: 1568