Synlett 2018; 29(15): 2027-2030
DOI: 10.1055/s-0037-1609556
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Thiophosphates by Coupling of Phosphates with Bunte Salts under Mild Conditions

Cong Min
College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. of China   Email: senlin@ncu.edu.cn   Email: yanzh@ncu.edu.cn
,
Rongxing Zhang
College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. of China   Email: senlin@ncu.edu.cn   Email: yanzh@ncu.edu.cn
,
Qian Liu
College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. of China   Email: senlin@ncu.edu.cn   Email: yanzh@ncu.edu.cn
,
Sen Lin*
College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. of China   Email: senlin@ncu.edu.cn   Email: yanzh@ncu.edu.cn
,
Zhaohua Yan*
College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. of China   Email: senlin@ncu.edu.cn   Email: yanzh@ncu.edu.cn
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (21302084).
Further Information

Publication History

Received: 10 May 2018

Accepted after revision: 13 June 2018

Publication Date:
14 August 2018 (online)


Abstract

A simple, green, and efficient method has been developed for the preparation of thiophosphates with sodium S-benzyl thiosulfates. The method uses an NaBr-catalyzed coupling reaction of Bunte salts with phosphonates in the presence of an acid and hydrogen peroxide (30%), and the desired products were obtained in good yields.

Supporting Information

 
  • References and Notes

    • 1a Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 1b Kumar TS. Yang T. Mishra S. Cronin C. Chakraborty S. Shen JB. Liang BT. Jacobson KA. J. Med. Chem. 2013; 56: 902
    • 1c Xie R. Zhao Q. Zhang T. Fang J. Mei X. Ning J. Tang Y. Bioorg. Med. Chem. 2013; 21: 278
    • 1d Wang DG. Zhao JL. Xu WG. Shao CW. Shi Z. Li L. Zhang XH. Org. Biomol. Chem. 2017; 15: 545
    • 2a Li NS. Frederiksen JO. Piccirilli JA. Acc. Chem. Res. 2011; 44: 1257
    • 2b Lauer AM. Wu J. Org. Lett. 2012; 14: 5138
    • 2c Keough DT. Spacek P. Hockova D. Tichy T. Vrbkova S. Slavetınska L. Janeba Z. Naesens L. Edstein MD. Chavchich M. Wang TH. Jersey JD. Guddat LW. J. Med. Chem. 2013; 56: 2513
    • 2d Liu N. Mao LL. Yang B. Yang SD. Chem. Commun. 2014; 50: 10879
    • 2e Sun JG. Yang H. Li P. Zhang B. Org. Lett. 2016; 18: 5114
    • 2f Mieko A. Tetsuya O. Masahiko Yi. Tetrahedron Lett. 2005; 46: 5669
    • 3a Piekutowska M. Pakulski Z. Tetrahedron Lett. 2007; 48: 8482
    • 3b Ghanem E. Li YC. Xu CF. Raushel FM. Biochemistry 2007; 46: 9032
    • 3c Shen DL. Cao YY. Zhu FX. Nongyao 2002; 41: 17
    • 3d Lauer AM. Mahmud F. Wu J. J. Am. Chem. Soc. 2011; 133: 9119
    • 4a Fukuoka M. Shuto S. Minakawa N. Ueno Y. Matsuda A. J. Org. Chem. 2000; 65: 5238
    • 4b Fukuoka M. Shuto S. Minakawa N. Ueno Y. Matsuda A. Tetrahedron Lett. 1999; 40: 5361
    • 4c Huang LJ. Zhao YY. Yuan L. Min JM. Zhang LH. J. Med. Chem. 2002; 45: 5340
    • 4d Kaboudin A. Emadi S. Hadizadeh A. Bioorg. Chem. 2009; 37: 101
    • 5a Pekutowska M. Pakulski Z. Carbohydr. Res. 2008; 343: 785
    • 5b Wang G. Shen R. Xu Q. Goto M. Zhao Y. Han LB. J. Org. Chem. 2010; 75: 3890
    • 5c Wang J. Huang X. Ni Z. Wang S. Wu J. Pan Y. Green Chem. 2015; 17: 314
    • 5d Kaboudin B. Abedi Y. Kato J.-Y. Yokomatsu T. Synthesis 2013; 45: 2323
    • 5e Panmand DS. Tiwari AD. Panda SS. Monbaliu JC. M. Beagle LK. Asiri AM. Stevens CV. Steel PJ. Hall CD. Katritzky AR. Tetrahedron Lett. 2014; 55: 5898
    • 6a Liu T. Neverov AA. Tasang JS. W. Brown RS. Org. Biomol. Chem. 2005; 3: 1525
    • 6b Li JC. Meng FH. Wang HM. Xiao JH. Tetrahedron 2016; 72: 706
    • 7a Liu YC. Lee CF. Green Chem. 2014; 16: 357
    • 7b Babaev BN. Asanova M. Uzb. Khim. Zh. 1988; 5: 17
    • 8a Alcaide A. Llebaria A. J. Org. Chem. 2014; 79: 2993
    • 8b Sun JG. Weng WZ. Li P. Zhang B. Green. Chem. 2017; 19: 1128
    • 8c Grounds H. Ermanis K. Newgas SA. Porter MJ. J. Org. Chem. 2017; 82: 12735
    • 8d Wang JC. Huang X. Ni ZQ. Wang SC. Pan YJ. Wu J. Tetrahedron 2015; 71: 7853
  • 9 Zhu YY. Chen TQ. Li S. Shimada S. Han LB. J. Am. Chem. Soc. 2016; 138: 5825
  • 10 Song S. Zhang YQ. Yeerlan A. Zhu BC. Liu JZ. Jiao N. Angew. Chem. Int. Ed. 2017; 129: 2527
    • 11a Bai J. Cui XL. Wang H. Wu YJ. Chem. Commun. 2014; 50: 8860
    • 11b He W. Hou X. Li XJ. Song L. Yu Q. Wang. Z. W. 2017; 73: 3133
    • 12a Bunte H. Chem. Ber. 1874; 7: 646
    • 12b Liu FM. Yi WB. Org. Chem. Front. 2018; 5: 428
    • 12c Reeves JT. Camara K. Han ZX. S. Xu YB. Lee H. Busacca CA. Senanayake CH. Org. Lett. 2014; 16: 1196
    • 12d Lin YM. Lu GP. Cai C. Yi WB. RSC. Adv. 2015; 5: 27107
    • 12e Liu BB. Chu XQ. Liu H. Yin L. Wang SY. Ji SJ. J. Org. Chem. 2017; 82: 10174
    • 13a Qiao ZJ. Jiang XF. Org. Lett. 2016; 18: 1550
    • 13b Qi H. Zhang TX. Wan KF. Luo MM. J. Org. Chem. 2016; 81: 4262
    • 13c Qiao ZJ. Ge NY. Jiang XF. Chem. Commun. 2015; 51: 10295
    • 13d Zhang RX. Yan ZH. Lin S. Synlett 2018; 29: 336
    • 13e Qiao ZJ. Jiang XF. Org. Biomol. Chem. 2017; 15: 1942
    • 13f Liu H. Jiang XF. Chem. Asian. J. 2013; 8: 2546
    • 14a Li YM. Wang M. Jiang XF. ACS Catal. 2017; 7: 7587
    • 14b Li YM. Xie WS. Jiang XF. Chem. Eur. J. 2015; 21: 16059
    • 14c Xiao X. Feng MH. Jiang XF. Chem. Commun. 2015; 51: 4208
    • 14d Zhang YH. Li YM. Zhang XM. Jiang XF. Chem. Commun. 2015; 51: 941
    • 14e Li YM. Pu JH. Jiang XF. Org. Lett. 2014; 16: 2692
    • 14f Qiao ZJ. Wei JP. Jiang XF. Org. Lett. 2014; 16: 1212
    • 14g Qiao ZJ. Liu H. Xiao X. Fu YN. Wei JP. Li YX. Jiang XF. Org. Lett 2013; 15: 2594
    • 15a Zhang RX. Yan ZH. Wang DY. Wang YX. Lin S. Synlett 2017; 28: 1195
    • 15b Li J. Cai ZJ. Wang SY. Ji SJ. Org. Biomol. Chem. 2016; 14: 9384
    • 15c Zhang RX. Jin SZ. Wang YX. Lin S. Yan ZH. Tetrahedron Lett. 2018; 59: 841
  • 16 Phosphorothioates 3; General Procedure Dialkyl phosphonate 1 (0.2 mmol) was added to a stirred mixture of sodium S-benzyl thiosulfate 2 (0.3 mmol), NaBr (0.04 mmol, 20 mol%), and HOAc (2.0 equiv) in CH3CN (1 mL). H2O2 (2.0 equiv) was added and the reaction mixture was stirred for 0.5 h at 80 °C. After the reaction was completed, it was cooled down to r.t. The resulting solution was diluted and extracted with EtOAc (3 ×10 mL). The organic layer was washed with saturated salt water and dried with anhydrous sodium sulfate. The pure product 3 was obtained by column chromatography. Compound 3bc was obtained in 77% yield (46.6 mg) according to the general procedure as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.27–7.19 (m, 2 H), 7.10 (d, J = 7.8 Hz, 2 H), 4.79–4.55 (m, 2 H), 4.01 (d, J = 12.3 Hz, 2 H), 2.31 (s, 3 H), 1.32 (d, J = 6.2 Hz, 6 H), 1.28 (d, J = 6.2 Hz, 6 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 137.27, 134.24, 129.28, 128.79, 72.59 (d, J = 6.3 Hz), 34.96 (d, J = 3.8 Hz), 23.81 (d, J = 4.1 Hz), 23.51 (d, J = 5.6 Hz), 21.08 ppm. 31P NMR (243 MHz, CDCl3): δ = 24.38 ppm. HRMS (ESI+): m/z calcd for C14H23O3PS [M + H]+: 303.1178; found: 303.1193.